### UNCLASSIFIED

| AD NUMBER                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AD839111                                                                                                                                                                                                                   |
| NEW LIMITATION CHANGE                                                                                                                                                                                                      |
| TO Approved for public release, distribution unlimited                                                                                                                                                                     |
|                                                                                                                                                                                                                            |
| FROM Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; MAY 1968. Other requests shall be referred to Space and Missile Systems Organization, Attn: SMTTA, Los Angeles, CA 90045. |
| AUTHORITY                                                                                                                                                                                                                  |
| SAMSO ltr dtd 28 Feb 1972                                                                                                                                                                                                  |

# Floating Point Cowell (Second-Sum), Runge-Kutta Integration of Second-Order Ordinary Differential Equations (Subroutine ASC DEQ4)

Prepared by JAMES F. HOLT Electronics Division

May 1968

El Segundo Technical Operations AEROSPACE CORPORATION

Prepared for SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

SEP 0 1983

THIS DOCUMENT IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO FOREIGN GOVERNMENTS OR FOREIGN NATIONALS MAY BE MADE ONLY WITH PRIOR APPROVAL OF SAMSO(SMTTA)

Air Force Report No. SAMSO-TR-68-298

## FLOATING POINT COWELL (SECOND-SUM), RUNGE-KUTTA INTEGRATION OF SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS (SUBROUTINE ASC DEQ4)

Prepared by

J. F. Holt Electronics Division

May 1968

El Segundo Technical Operations AEROSPACE CORPORATION

Prepared for

SPACE AND MISSILE SYSTEMS ORGANIZATION AIR FORCE SYSTEMS COMMAND LOS ANGELES AIR FORCE STATION Los Angeles, California

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of SAMSO(SMTTA).

#### FOREWORD

This report is published by the Aerospace Corporation, El Segundo, California, under Air Force Contract No. F04695-67-C-0158.

This report, which documents research carried out from 1 January 1967 to 1 April 1967, was submitted on 22 July 1968 to Lieutenant Kenneth E. Nelson, SAMSO(SMTTA), for review and approval.

Information in this report is embargoed under the Department of State International Traffic in Arms Regulations. This report may be released to foreign governments by departments or agencies of the U.S. Government subject to approval of the Space and Missile Systems Organization, or higher authority within the Department of the Air Force. Private individuals or firms require a Department of State export license.

Approved

T.R. Parlin

T. R. Parkin, Director Mathematics and Computation Center Electronics Division

Publication of this report does not constitute Air Force approval of the report's findings or conclusions. It is published only for the exchange and stimulation of ideas.

Kenneth E. Nelson, 2nd Lt, USAF

Project Officer

#### ABSTRACT

ASC DEQ4 is a floating point subroutine, written in FORTRAN IV source language, which integrates numerically a set of N simultaneous second-order ordinary differential equations in which first derivatives may or may not appear [i.e.,  $y_i'' = f(t, y_i, y_i')$  of  $y_i'' = f(t, y_i)$ , i = 1, 2, ..., N]. If the N equations can be separated into two groups (IB and N-IB) such that the first IB equations are not dependent on the final N-IB equations (e.g., variational equations) then DEQ4 has the capability of integrating the final N-IB equations at a larger step size than the first IB equations, thus saving 2(R-1)(N-IB) derivatives per integration step. This subroutine obsoletes subroutine DEQ2 with the following improvements: better accuracy controls, new starting procedure, improved halving and doubling procedure, reduction in computing time, and reduction in core storage requirements (10N less).

The subroutine is restricted in that it contains 20 digit octal constants (real constants) for the CDC 5000 series machines.

#### CONTENTS

| ABST | RACT                                                                           | iii  |
|------|--------------------------------------------------------------------------------|------|
| I.   | INTRODUCTION                                                                   | i    |
|      | A. Purpose                                                                     | 1    |
|      | B. Restrictions                                                                | 1    |
|      | C. Method                                                                      | 2    |
| II.  | PROGRAM USAGE                                                                  | 3    |
|      | A. Calling Sequence                                                            | 3    |
|      | B. Multiple Entries                                                            | 7    |
|      | C. Two-Group Multi-Step Mode                                                   | 9    |
|      | D. Coding Information                                                          | 10   |
|      | E. Space Required                                                              | 11   |
| APPI | ENDIXES                                                                        |      |
| A.   | MATHEMATICAL METHOD                                                            | A-1  |
| в.   | FORTRAN IV SOURCE LANGUAGE FOR DEΩ4 (CDC 6400-6600)                            | B-1  |
|      | TABLES                                                                         |      |
| A-1. | Difference Table                                                               | A-7  |
| A-2. | Coefficients for W <sub>i</sub> for Eq. (A-5)                                  | A-12 |
| A-3. | Coefficients for V <sub>i</sub> for Eq. (A-6)                                  | A-12 |
| A-4. | Coefficients for $N_i$ , $\dot{N}_i$ , $B_i$ , $\dot{B}_i$ , $D_i$ , and $C_i$ | A-13 |

#### SECTION I

#### INTRODUCTION

#### A. PURPOSE

The purpose of ASC DEQ4 is to integrate numerically a set of N simultaneous second-order ordinary differential equations in which first derivatives may or may not appear [i.e.,  $y_i'' = f(t, y_i, y_i')$  or  $y_i'' = f(t, y_i)$  i = 1, 2, ..., N]. If the N equations can be separated into two groups (IB and N-IB) such that the first IB equations are not dependent on the final N-IB equations, then DEQ4 has the capability of integrating the final N-IB equations at a larger step size (ratio = R =  $2^K$ ,  $K \ge 1$ ) than the first IB equations. This will save 2(R-1)(N-IB) derivatives per integration step when operating in the Cowell mode.

#### B. RESTRICTIONS

The restrictions associated with the use of ASC DEQ4 are as follows:

- 1. No internal checks are made for overflow or underflow.
- 2. The user must provide an auxiliary subroutine (DAUX) which evaluates the second-order derivatives and the name of the auxiliary subroutine must be defined as an argument in the calling sequence and also through the use of the EXTERNAL statement in the main program (i. e., EXTERNAL DAUX).
- 3. If the two-group, multi-step mode is used, then DAUX should be programmed to skip the evaluation of the final N-IB derivatives when TEST is negative. (See IB, TEST, and VMIN in Section II-A for restrictions on the use of the two-group, multi-step mode.
- 4. Initial conditions must be stored prior to entering the program.
- 5. ASC DEQ4 is a single precision subroutine written in Fortran IV Source Language.
- 6. The subroutine contains 20 digit octal constants (real constants) for the CDC 6000 series machines.

#### C. METHOD

A fourth-order Runge-Kutta method is used to start the integration and to halve the step size during integration. A Cowell "second-sum" method based on eighth differences is used to continue the integration. Doubling is accomplished in the Cowell mode through the accumulation of alternate steps. Truncation error can be controlled by choosing an appropriate step size, and by using the variable step size mode of operation. DEQ4 has an automatic restart procedure which works as follows:

After eight Runge-Kutta steps (h = H/IR), an attempt is made to integrate in the Cowell mode (h = H/IR). If the error criterion (see ER in Section II-A) cannot be satisfied for the first IB equations, the initial conditions (i. e.,  $t_0$ ,  $y_{10}'$ , and  $y_{10}''$ ) are restored, the step size is reduced to h = h/2\*IR), and the integration is restarted. This procedure continues until the error criterion is satisfied, or until h < HMIN. For the latter, the subroutine sets TEST = 13 and exits to the user.

Note: Either I2 < 0, or HMIN = HMAX nullifies the restart procedure as well as the halving procedure.

<sup>&</sup>lt;sup>1</sup>J. B. Scarborough, <u>Numerical Mathematical Analysis</u>, Third Edition, John Hopkins Press, <u>Baltimore</u> (1955) pp. 301-302.

#### SECTION II

#### PROGRAM USAGE

#### A. CALLING SEQUENCE<sup>1</sup>

CALL DEQ4(N, I1, I2, IA, IB, IR, ER, HMIN, HMAX, YMIN, DAUX, TEST, IDH, NTRY, JHH, JHD, VMIN, VMAX, T, H, Y, YP, Y2P, T1, T2, T3, T4, T5, T6, T7, F2P, F1P, DLT1, DLT2, DLT3, DLT4, DLT5, DLT6, DLT7, DLT8)

The nomenclature is as follows:

N the number of equations.

Ii an option, so that if

If  $\geq 0$ , 1st derivatives are present in the evaluation of the second derivatives,  $[y_i^{"} = f(t, y_i, y_i^{"})]$ .

If < 0, 1st derivatives are missing in the evaluation of the second derivatives,  $[y_i^{ij} = f(t, y_i)]$ .

I2 an option, so that if

I2  $\geq$  0, variable step size mode of operation is used.

I2 < 0, fixed step size mode of operation is used.

(Note: For I2 < 0, h = H/IR for all steps.)

IA an indicator switch to the user during exit to DAUX.

IA = -1 for first (1, 2, 3 if Runge-Kutta) pass through DAUX.

IA = +1 for final (4th if Runge-Kutta) pass through DAUX.

This applies for each integration step. In the Cowell mode, IA = -1 when the derivatives of the predictor are being asked for, and IA = +1 when the derivatives of the corrector are being asked for.

IB Only the first IB (≤ N) equations are tested to determine whether it is necessary to halve or possible to double the step size or to proceed with a Cowell integration step. (See Section I-A and Section II-C for an additional use of IB.)

See NTRY and Section II-B

For a given step-size H, the initial step size for both Runge-Kutta and Cowell will be h = H/IR. If halving is required, the current step-size h is reduced to h = h/(2\*IR) for all N equations, and the integration procedure returns to the Runge-Kutta mode. (Usually IR = 8 or 16; if IR = 0, DEQ4 sets IR = 16.)

ER The user should set ER = 1E - S (i.e.,  $10^{-S}$ ), where S is the approximate number of significant figures desired. If ER = 0, DEQ4 sets ER = 1E - 11. (User should test for best ER.) In general, ER  $\leq 1E - 11$  is recommended.

HMIN the minimum absolute value of the step size allowed when halving is required. During the starting procedure (see Section I-C), if halving is required and h/(2\*IR) < HMIN, the integration is terminated with TEST = 13.; otherwise, the integration is continued in the Cowell mode with the current step-size h (i. e., halving is not permitted). If HMIN = HMAX, all halving is suppressed during the entire integration procedure. If HMIN = 0, DEQ4 sets HMIN = 1E - 5. Only the first IB equations are tested for halving.

the maximum absolute value of the step size allowed for the first IB equations. The final N-IB equations may be integrated at a larger step size when operating in the two-group, multistep integration mode (see Section I-A). If HMAX = 0, DEQ4 sets HMAX = 1. A value of HMAX ≤ 16 is recommended for most problems.

YMIN the minimum absolute value allowed for  $y_i$  for the relative error test during the halving and doubling procedure. YMIN prevents unnecessary halving for  $y_i \approx 0$ . If YMIN = 0, DEQ4 sets YMIN = 1. (User should supply YMIN).

Note: For the more difficult problems, it may be necessary for the user to modify the subroutine and make YMIN a vector of dimension IB -- thus allowing a different YMIN for the first IB equations.

by the user) which evaluates and stores (see Y2P) the secondorder derivatives y!. DAUX must be defined by the user through
the use of the EXTERNAL statement in the main program, and
COMMON must be used as a means of data linkage. CALL
DAUX is used by DEQ4 to enter DAUX. If the two-group,
multi-step mode is used, then DAUX should be programmed to
skip the evaluation of the final N-IB derivatives when TEST is
negative.

TEST has the following multiple uses:

Initially (i. e., prior to NTRY = 1), the user must set:

TEST = +1., to integrate the N equations at the same step size.

TEST ≥ +2., to use the two-group, multi-step mode. The maximum ratio of the step sizes for the two groups will be R<sub>MAX</sub> = 2\*\*(TEST -1). Recommend TEST ≤ 5. After each integration step (NTRY = 2) DEQ4 will set:

TEST = +1., if the integration was a Runge-Kutta step (i.e., during starting procedure, or halving procedure if JHH = 1).

TEST = +2., if the integration has been restarted during the initial starting procedure. Indicates h = h/(2\*IR) and Runge-Kutta step.

TEST = +3., if the step size has been reduced [h = h/(2\*IR,] and the integration has been returned to a previous step during the halving procedure (possible only if JHH = 3).

TEST = -1., if the integration was a Cowell step. During the starting procedure (see Section I-C):

TEST = +13., if the integration has been terminated during the restarting procedure. Indicates programming error, or ER, H, or HMIN too restrictive.

During transfers to DAUX (also, see IA and DAUX):

TEST = -1., when the first IB equations are being integrated (at a smaller step-size) in the multi-step Cowell mode.

TEST = +1., when the N equations are being integrated in the Runge-Kutta or Cowell mode.

IDH an indicator switch to the user after each integration step.

IDH = 1, if the step size has not changed

IDH = 2, if the step size of all N equations has been reduced to h = h/(2\*IR) where h is the current step size of the first IB equations.

IDH = 3, if the step size of all N equations has been doubled.

IDH = 4, if the step size of the final N-IB equations has been doubled (possible only in multi-step mode).

NTRY

a special option to simulate multiple entries. The user must set NTRY prior to using the calling sequence.

NTRY = 1 Setup entry (store all initial conditions first).

NTRY = 2 Normal Runge-Kutta/Cowell integration.

NTRY = 3 Integrate in Runge-Kutta mode exclusively.

(Note: NTRY = 1 must be used prior to the other two values. See Section II-B for further details.)

JHH

an option to control the halving procedure.

JHH = 1 Reduce step size and return to Runge-Kutta mode.

JHH = 3 Return to previous step, restore all conditions
(i. e., t, y<sub>i</sub>, and y<sub>i</sub>) at that step, reduce step size
and return to Runge-Kutta mode.

(Note: See Section II-C for exception to JHH = 3 option.)

JHD

(No longer used in DEQ4)

All doubling is performed in the Cowell mode through the accumulation of alternate steps.

**VMIN** 

the location of one cell used by DEQ4 for the halving and doubling tests.

VMIN =  $10^{-1}$  ER/H<sup>2</sup> (computed internally, varies with H)

Initially (prior to NTRY = 1) the user must set VMIN  $\geq$  1. if TEST  $\geq$  2.(i. e., multi-step rode). This initial value allows the user to control the doubling procedure for the final N-IB equations if the multi-step mode is used. A larger value of VMIN (initially) will reduce the accuracy requirements for the final N-IB equations and thus allow them to be integrated at a larger step-size. A value of  $10.\leq$  VMIN  $\leq$  10.5 is recommended.

**VMAX** 

the location of one cell used by DEQ4 for the halving and doubling tests. VMAX = 10.3 ER/H<sup>2</sup> (computed internally, varies with H).

T

the location of the independent variable  $t_n$  -- stored initially by the user and incremented automatically by the subroutine during the integration procedure. T may be reset to a previous step by the subroutine during the starting procedure or, during the halving procedure when JHH = 3.

the location of step-size h -- stored initially by the user and modified automatically by the subroutine during the integration procedure. Initially, DEQ4 sets H = H/IR as the initial step-size for both Runge-Kutta and Cowell. If H = 0, DEQ4 sets H = 0.01 (H can be positive or negative). In the multi-step mode, H will contain the current step size of the first IB equations.

Y the location of N dependent variables y<sub>i</sub> -- stored initially by the user and modified automatically by the subroutine during the integration procedure.

YP the location of N first derivatives y! -- stored initially by the user and modified automatically by the subroutine during the integration procedure.

Y2P the location of N second derivatives y! -- computed and stored by the DAUX subroutine supplied by the user. If the two-group, multi-step mode is used, then DAUX should be programmed to skip the evaluation of the final N-IB second derivatives when TEST is negative.

T1 through are temporary storages used by the subroutine. Each T7, F2P, F1P, of these temporary storages must have a dimension and DLT1 of N and must be preserved throughout the integration through DLT8 procedure.

#### B. MULTIPLE ENTRIES

For purposes of compatibility between machines and different versions of Fortran IV, the parameter NTRY is used to simulate multiple entires. This requires the user to change the value of NTRY prior to using the calling sequence. This is done as follows:

#### NTRY = 1, Setup Entry

The user must set NTRY = 1 and store all initial conditions and options prior to using the calling sequence. This includes N, I1, I2, IB, IR, ER, HMIN, HMAX, YMIN, TEST, NTRY, JHH, VMIN, T, H, Y, and YP.

After setting NTRY = 1, the user must CALL DEQ4(N, I1,..., DLT8) for the setup entry. The subroutine performs various tests on parameters (e.g., sets H = 0.01, if H = 0), sets initial switches and options for the

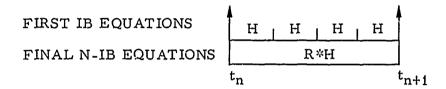
integration procedure, calls DAUX to form  $y_i^{"}$  at  $t_0$ , and then returns to the user. No integration is performed during the setup entry. The above entry must be performed prior to any other entry (one time only).

#### NTRY = 2, Integration Entry - Runge-Kutta/Cowell Mode

This is the normal integration entry and should be programmed within a DO loop (to control situations such as maximum steps in case of an error). After setting NTRY = 2, the user must CALL DEQ4(N, I1,..., DLT8) to integrate one step in the Runge-Kutta/Cowell mode. The subroutine integrates one step (H/IR initially) and returns to the user. The first eight steps will be in the Runge-Kutta mode; thereafter the subroutine will integrate in the Cowell mode (h = H/IR), doubling approximately every 16 steps until  $h \rightarrow H$ . If the two-group, multi-step mode is used (TEST  $\geq$  2.initially) then the step size of the final N-IB equations may continue to double, subject to the restrictions of the initial values of TEST and VMIN. In this case, during each entry to DEQ4, the first IB equations will be integrated R steps (h = H) while the final N-IB equations will be integrated one step (h = R\*H). All of this is automatic, and the user need only loop through the calling sequence to integrate from to tend. The user should test T after each integration step to determine the proper exit procedure, using NTRY = 3 to integrate to a specific time point t<sub>END</sub>. If output is desired at a particular time point  $t_i$  ( $t_i \neq t_n$ ), an interpolation subroutine such as RW NTRP is recommended.

#### NTRY = 3, Integrate in the Runge-Kutta Mode

After any integration step, or after setup entry, the user can integrate one or more steps in the Runge-Kutta mode. After setting NTRY = 3 (and changing the step-size H if necessary), the user must CALL DEQ4(N, I1,..., DLT8) to integrate one step in the Runge-Kutta mode. The step size can be changed after each Runge-Kutta integration step, and negative H is permissible. NTRY = 3 should be used primarily to end the integration at a specific value  $t_{\rm END}$ . It can also be used to integrate to a specific output


time  $t_{OUTPUT}$  ( $t_n$  - H <  $t_{OUTPUT}$  <  $t_n$  + H), where  $t_n$  is the current value of the independent variable and H is the current step size, if the regions TEST, T, H, Y, YF. Y2P, and T1 through T4 are saved and restored before continuing the normal integration (i. e. , NTRY = 2). Note that the step size for the Runge-Kutta integration should be  $\leq$  H/IR if the same accuracy is desired, where H is the current step size of the Cowell mode. If the two-group multi-step mode is used, then several Runge-Kutta steps may be required to integrate from  $t_n$  to  $t_{OUTPUT}$  (i. e. ,  $t_n$  - R\*H <  $t_{OUTPUT}$  <  $t_n$  + R\*H). (See Section II-C for further details.)

#### C. TWO-GROUP MULTI-STEP MODE

The subroutine assumes that the N equations can be separated into two groups (IB and N-IB) such that the first IB equations are not dependent on the final N-IB equations. This would be the case, for example, for a system of nonlinear differential equations which are integrated simultaneously with the variational equations (i. e., Newton-Raphson Method). Since the variational equations are always linear and also require less accuracy, they can be integrated at a larger step size than the first IB nonlinear differential equations. This is accomplished in DEQ4 through the use of the initial values of TEST and VMIN. TEST controls the maximum ratio of the two step sizes and VMIN controls the accuracy of the final N-IB equations. For example, if TEST = 3 and VMIN = 1000 initially, then the maximum possible ratio of the two groups will be  $R_{MAX} = 2^2 = 2**(TEST - 1)$  and the accuracy requirements for the final N-IB equations will be ER\*1000, where ER determines the accuracy of the first IB equations.

The doubling procedure works as follows: Initially, all N equations are integrated in the Runge-Kutta mode at a step-size  $H = H_0/IR$ . After eight Runge-Kutta steps all N equations are integrated in the Cowell mode at a step-size  $h = H_0/IR$ . Thereafter (assuming halving is not required), the step size for all N equations will double every 16 steps (in the Cowell mode) until the step size for the first IB equations can no longer be doubled. From

that point the step size of the final N-IB equations will continue to double under the restrictions of TEST and VMIN described above. For example, during an entry to DEQ4 (NTRY = 2) if R = 4 the following integration will be performed in the Cowell mode:



Note that during one entry into DEQ4, the first IB equations are integrated R steps with a step size of H while the final N-IB equations are integrated one step with a step size of R\*H. Upon the next entry, if halving is required for the first IB equations, then H is reduced to H = H/(2\*IR) for all N equations and the above procedure is repeated. If JHH = 1 the integration will continue from T =  $t_{n+1}$ . If JHH = 3 the integration will normally continue from T =  $t_n$  with all conditions restored at that point. However, if the final N-IB equations were being saved for doubling at T =  $t_n$  (i. e. ,  $R_{MAX}$  had not been reached), then the integration will be continued from T =  $t_{n+1}$  (same as JHH = 1). Thus, the doubling of the final N-IB equations is given precedent over the halving procedure in regards to the JHH = 3 option. For this reason TEST  $\leq$  5.is recommended, since the doubling procedure for the final N-IB equations is discontinued when  $R_{MAX}$  has been reached.

Since 2(R-1)(N-IB) derivatives are no longer computed during each Cowell step, the use of the two-group multi-step mode will result in a considerable saving of computing time where applicable.

#### D. CODING INFORMATION

The calling sequence can be simplified to

#### CALL DEQ4

by placing all parameters of the calling sequence in (labeled or blank)
COMMON and using the name DAUX (identical with the name used internally

by DEQ4) for the auxiliary subroutine. In additon, all parameters (i.e., Y, YP, Y2P, etc.) must be dimensioned within subroutine DEQ4<sup>1</sup>, and the SUBROUTINE statement in DEQ4 must be changed to

#### SUBROUTINE DEQ4

#### E. SPACE REQUIRED

In addition to the parameters in the calling sequence, approximately 35718 cells are required.

Note: The coefficients required for the Cowell integration mode are stored in DEQ4 as 20 digital octal constants through the use of the DATA declaration. These coefficients were formed in double precision on the CDC 6600 and are the octal equivalent of the 60-bit real floating point constants of the CDC 6000 series machines. See Appendix A for a complete description of the mathematical method.

The Fortran IV Source Language for DEQ4 is provided in Appendix B.

#### APPENDIX A

#### MATHEMATICAL METHOD

The ASC DEQ4 subroutine [Floating Point Cowell (Second-Sum)
Runge-Kutta Integration of Second-Order Ordinary Differential Equations] is
prepared to solve the system of equations defined as

$$y_{i}'' = f_{i}(t, y_{i}, ..., y_{N}, y_{i}', ..., y_{N}')$$
 (i = 1, 2, ..., N)  
 $y_{i}(t_{0}) = y_{i0}, y_{i}'(t_{0}) = y_{i0}'$  (i = 1, 2, ..., N)

(A-1)

In case none of the f<sub>i</sub> involve the first derivatives y'<sub>1</sub>, time is saved by indicating this in the set-up (i.e., set II = -1). DEQ4 includes a fourth order Runge-Kutta subroutine that is used for the starting procedure and for the halving procedure. The Runge-Kutta subroutine can also be used independently of the main subroutine through the use of NTRY = 3. For the sake of completeness the Runge-Kutta equations are given in the following paragraphs.

#### A. 1. RUNGE-KUTTA EQUATIONS

Let  $y_{in}$  and  $y'_{in}$  be the values of  $y_i$  and  $y'_i$  at  $t = t_n$ ;  $f_{in}$  be the second derivative of  $y_i$  at  $t = t_n$ ; and h be the increment (step size) of the independent variable t. The Runge-Kutta formulas used in this subroutine are as follows:

<sup>&</sup>lt;sup>1</sup>J. B. Scarborough, <u>Numerical Mathematical Analysis</u>, Third Edition, John Hopkins Press, <u>Baltimore</u>, Maryland (1955) pp. 300-301.

$$\begin{aligned} k_{i1} &= hf_{i}(t_{n}, y_{in}, y'_{in}) \\ k_{i2} &= hf_{i}\left(t_{n} + \frac{h}{2}, y_{in} + \frac{h}{2}y'_{in} + \frac{h}{8}k_{i1}, y'_{in} + \frac{k_{i1}}{2}\right) \\ k_{i3} &= hf_{i}\left(t_{n} + \frac{h}{2}, y_{in} + \frac{h}{2}y'_{in} + \frac{h}{8}k_{i1}, y'_{in} + \frac{k_{i2}}{2}\right) \\ k_{i4} &= hf_{i}(t_{n} + h, y_{in} + hy'_{in} + \frac{h}{2}k_{i3}, y'_{in} + k_{i3}) \end{aligned} \tag{A-2}$$

$$\Delta y_{in} = h\left[y'_{in} + \frac{1}{6}(k_{i1} + k_{i2} + k_{i3})\right]$$

$$\Delta y'_{in} = \frac{1}{6}\left[k_{i1} + 2k_{i2} + 2k_{i3} + k_{i4}\right]$$

$$y_{i, n+1} = y_{in} + \Delta y_{in}$$

$$y'_{i, n+1} = y'_{in} + \Delta y'_{in}$$

For the special second-order equation, you have

$$y_i^{\prime\prime} = f_i(t, y_1, \dots, y_n)$$
 (1st derivatives missing) (A-3)

It should be noted that  $k_{i2} = k_{i3}$ , so that above formulas reduce to the following Runge-Kutta formulas:

$$k_{i1} = hf_{i}(t_{n}, y_{in})$$

$$k_{i2} = hf_{i}(t_{n} + \frac{h}{2}, y_{in} + \frac{h}{2}y'_{in} + \frac{h}{8}k_{i1})$$

$$k_{i3} = hf_{i}(t_{n} + h, y_{in} + hy'_{in} + \frac{h}{2}k_{i2})$$

$$\Delta y_{in} = h[y'_{in} + \frac{1}{6}(k_{i1} + 2k_{i2})]$$
(cont.)

$$\Delta y'_{in} = \frac{1}{6} [k_{i1} + 4k_{i2} + k_{i3}]$$

$$y_{i, n+1} = y_{in} + \Delta y_{in}$$

$$y'_{i, n+1} = y'_{in} + \Delta y'_{in}$$
(A-4)

where  $k_{i4}$  of Eq. (A-2) is now  $k_{i3}$  of Eq. (A-4).

The subroutine can be made to take advantage of this fact by a simple change in the calling sequence (i. e., set I1 = -1) and thus save one derivative per integration step in the Runge-Kutta mode.

#### A. 2 COWELL STARTING PROCEDURE

A Cowell (Second-Sum) method based on eight differences is used to continue the integration after the first eight Runge-Kutta steps. The user must ask for each integration step and the subroutine will follow this sequence:

- a. Perform eight Runge-Kutta steps of size h = H<sub>start</sub>/IR (one Runge-Kutta step for each entry to DEQ4) to obtain y<sub>i1</sub>, y'<sub>i1</sub>, y'<sub>i1</sub> through y<sub>i8</sub>, y'<sub>i8</sub>, y'<sub>i8</sub>.
- b. For each of the N equations, that part of the difference table above the diagonal line is constructed in an accumulative manner during the eight Runge-Kutta steps (DEQ4 returns to the user after each Runge-Kutta step).

To start the Cowell integration we need "F<sub>i10</sub>, 'F<sub>i9</sub>, y<sub>i8</sub>, y'<sub>i8</sub>, y'<sub>i8</sub>, y'<sub>i8</sub>,  $\Delta^{I}_{i7}$ ,  $\Delta^{II}_{i6}$ ,  $\Delta^{III}_{i5}$ ,  $\Delta^{IV}_{i4}$ ,  $\Delta^{V}_{i3}$ ,  $\Delta^{VII}_{i1}$ , and  $\Delta^{VIII}_{i0}$ . The values y<sub>i8</sub>, y'<sub>i8</sub>, and y''<sub>i8</sub> are available after the eight Runge-Kutta integration step. The other values are computed as follows:

$${^{'}}F_{i9} = y_{i4}' / H + W_0 y_{i0}'' + W_1 y_{i1}'' + W_2 y_{i2}'' + W_3 y_{i3}'' + W_4 y_{i4}'' + W_5 y_{i5}'' + W_6 y_{i6}'' + W_7 y_{i7}'' + W_8 y_{i8}''$$
(A-5)

$$''F_{i10} = y_{i4}/H^{2} + 5y_{i4}'/H + V_{0}y_{i0}'' + V_{1}y_{i1}'' + V_{2}y_{i2}'' + V_{3}y_{i3}'' + V_{4}y_{i4}'' + V_{5}y_{i5}'' + V_{6}y_{i6}'' + V_{7}y_{i7}'' + V_{8}y_{i8}''$$
(A-6)

$$\Delta_{i7}^{I} = y_{i8}^{"} - y_{i7}^{"}$$
 (A-7)

$$\Delta_{i6}^{II} = y_{i8}^{\prime\prime} - 2y_{i7}^{\prime\prime} + y_{i6}^{\prime\prime}$$
 (A-8)

$$\Delta_{i5}^{\text{III}} = y_{i8}^{\prime\prime} - 3 y_{i7}^{\prime\prime} + 3 y_{i6}^{\prime\prime} - y_{i5}^{\prime\prime}$$
 (A-9)

$$\Delta_{i4}^{IV} = y_{i8}^{\prime\prime} - 4y_{i7}^{\prime\prime} + 6y_{.6}^{\prime\prime} - 4y_{i5}^{\prime\prime} + y_{i4}^{\prime\prime}$$
 (A-10)

$$\Delta_{i3}^{V} = y_{i8}^{\prime\prime} - 5 y_{i7}^{\prime\prime} + 10 y_{i6}^{\prime\prime} - 10 y_{i5}^{\prime\prime} + 5 y_{i4}^{\prime\prime} - y_{i3}^{\prime\prime}$$
 (A-11)

$$\Delta_{i2}^{VI} = y_{i8}^{\prime\prime} - 6y_{i7}^{\prime\prime} + 15y_{i6}^{\prime\prime} - 20y_{i5}^{\prime\prime} + 15y_{i4}^{\prime\prime} - 6y_{i3}^{\prime\prime} + y_{i2}^{\prime\prime}$$
 (A-12)

$$\Delta_{i1}^{VII} = y_{i8}^{\prime\prime} - 7y_{i7}^{\prime\prime} + 21y_{i6}^{\prime\prime} - 35y_{i5}^{\prime\prime} + 35y_{i4}^{\prime\prime} - 21y_{i3}^{\prime\prime} + 7y_{i2}^{\prime\prime} - y_{i1}^{\prime\prime}$$
 (A-13)

$$\Delta_{i0}^{VIII} = y_{i8}^{\prime\prime} - 8y_{i7}^{\prime\prime} + 28y_{i6}^{\prime\prime} - 56y_{i5}^{\prime\prime}$$

$$+ 70y_{i4}^{\prime\prime} - 56y_{i3}^{\prime\prime} + 28y_{i2}^{\prime\prime} - 8y_{i1}^{\prime\prime} + y_{i0}^{\prime\prime}$$
(A-14)

Before going ic a Cowell step, the step-size  $h = H_{start}/IR$  is tested. Only the first IB equations are used to test, where  $1 \le IB \le N$ . For the first

IB equations we determine

$$V = \frac{\max_{1 \le i \le IB} \left[ \frac{|\Delta_{i1}^{VII}|}{\max(|y_{i8}|, YMIN)} \right]$$
 (A-15)

If  $V \ge 10^3 * ER/h^2$ , then the ratio of the seventh difference to function is too large. Therefore, h is reduced to h = h/(2\*IR), the initial conditions (i.e.,  $t_0$ ,  $y_{i0}$ ,  $y_{i0}'$ , and  $y_{i0}''$ ) are restored, and the integration procedure is restarted. This procedure is repeated until: (a)  $V < 10^3 * ER/h^2$  or (b) h < HMIN. For (a) the routine proceeds to a Cowell integration step with the current value of h. For (b) the routine sets TEST = 13 and returns to the user -- indicating a programming error or that ER,  $H_{start}$ , or HMIN are too restrictive. The constant YMIN (equals 1 if unspecified) prevents division by y near a zero; for example, in the sine calculation YMIN = 0.01 avoids difficulty near 180 deg. The value ER (equals 1E - 11 if unspecified) allows a larger h if chosen larger, say ER = 1E - 8.

#### A. 3 COWELL INTEGRATION

If  $V < 10^3 * ER/h^2$  after the eighth Runge-Kutta step, we begin the Cowell integration with predictions of

$$y_{i9} = h^{2} \Big( \text{''F}_{i10} + N_{0} y_{i8}^{\prime\prime} + N_{1} \Delta_{i7}^{I} + N_{2} \Delta_{i6}^{II} + N_{3} \Delta_{i5}^{III} + N_{4} \Delta_{i4}^{IV} + N_{5} \Delta_{i3}^{V} + N_{6} \Delta_{i2}^{VI} + N_{7} \Delta_{i1}^{VII} + N_{8} \Delta_{i0}^{VIII} \Big)$$
(A-16)

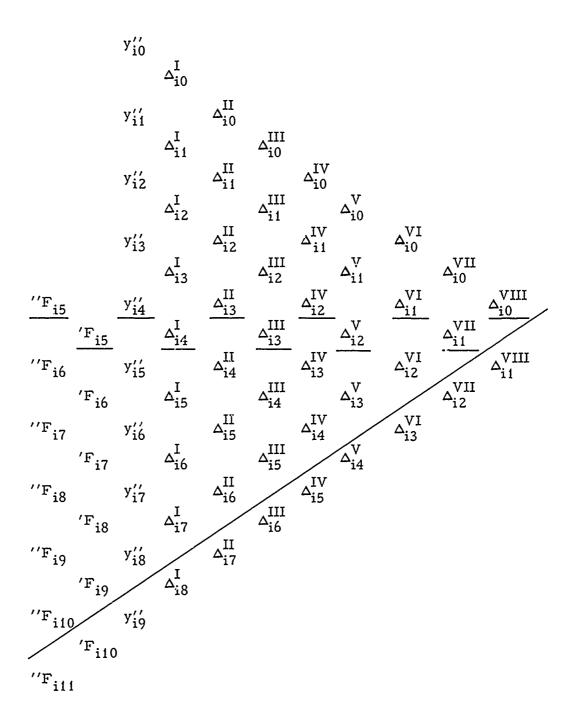
$$y_{i9}^{\prime} = h \left( \mathbf{F}_{i9} + \dot{\mathbf{I}}_{0} y_{i8}^{\prime\prime} + \dot{\mathbf{N}}_{1} \Delta_{i7}^{I} + \dot{\mathbf{N}}_{2} \Delta_{i6}^{II} + \dot{\mathbf{N}}_{3} \Delta_{i5}^{III} \right)$$

$$+ \dot{\mathbf{N}}_{4} \Delta_{i4}^{IV} + \dot{\mathbf{N}}_{5} \Delta_{i3}^{V} + \dot{\mathbf{N}}_{6} \Delta_{i2}^{VI} + \dot{\mathbf{N}}_{7} \Delta_{i1}^{VII} + \dot{\mathbf{N}}_{8} \Delta_{i0}^{VIII} \right)$$
(A-17)

These equations use the row of the difference table above the diagonal line; only this row is needed for a Cowell step and is kept up to date as the integration proceeds. The prediction for  $y_{i9}'$  is omitted if the option Ii = -1 is used. Now from  $y_{i9}$  and  $y_{i9}'$ , we obtain  $y_{i9}'$  (from DAUX) and then complete the row of differences out to  $\Delta_{i1}^{VIII}$  under the diagonal line in Table A-1. For example:  $\Delta_{i8}^{I} = y_{i9}'' - y_{i8}'$ ;  $\Delta_{i7}^{II} = \Delta_{i8}^{I} - \Delta_{i7}^{I}$ ; and so on.

With this row, we calculate the corrected values:

$$y_{i,9} = h^{2} \left( \text{''F}_{i10} + B_{0} y_{i,9}^{''} + B_{1} \Delta_{i8}^{I} + B_{2} \Delta_{i7}^{II} + B_{3} \Delta_{i6}^{III} \right)$$


$$+ B_{4} \Delta_{i5}^{IV} + B_{5} \Delta_{i4}^{V} + B_{6} \Delta_{i3}^{VI} + B_{7} \Delta_{i2}^{VII} + B_{8} \Delta_{i1}^{VIII} \right) \qquad (A-18)$$

$$y_{i9}' = h \left( {}^{\prime}F_{i9} + \dot{B}_{0} y_{i9}'' + \dot{B}_{1} \Delta_{i8}^{I} + \dot{B}_{2} \Delta_{i7}^{II} + \dot{B}_{3} \Delta_{i6}^{III} \right)$$

$$+ \dot{B}_{4} \Delta_{i5}^{IV} + \dot{B}_{5} \Delta_{i4}^{V} + \dot{B}_{6} \Delta_{i3}^{VI} + \dot{B}_{7} \Delta_{i2}^{VII} + \dot{B}_{8} \Delta_{i1}^{VIII} \right)$$
(A-19)

From these we get corrected values for  $y_{i9}''$  (from DAUX) and recalculate the entire row under the diagonal line. Using these new values we calculate new values for  $y_{i9}$  and  $y_{i9}'$  using Eqs. (A-18) and (A-19). Thus,  $y_{i9}$  and  $y_{i9}'$  are corrected twice; however, new values for  $y_{i9}''$  are not computed for these new values. Next we compute  $F_{i10} = F_{i9} + y_{i9}''$  and  $F_{i11} = F_{i10} + F_{i10}$ . This completes the integration step and DEQ4 exits to the user.

On the next entry we repeat the test for halving [i.e., at Eq. (A-15)]. If halving is not required, we continue the Cowell integration using Eqs. (A-16) through (A-19) as before. If halving is required after at least one Cowell integration step has been completed, we set H = H/(2\*IR) and start a new sequence of eight Runge-Kutta steps. If JHH = 1, we do not retrace ground; however, if JHH = 3 (and the final N-IB equations are not being saved for doubling in the two-group multi-step mode) then we return to the previous step, restore the conditions at that point and then start a new sequence of



1

Table A-1. Difference Table

eight Runge-Kutta steps with H = H/(2\*IR). This can be shown graphically as

JHH = 3 COWELL

$$t_{n-1}$$
 $t_n$ 

return to  $t_{n-1}$ , restore conditions ( $t = t_{n-1}, y_i, n-1$ )

 $t_{n-1}$ 
 $t_n$ 
 $t_{n-1}$ 
 $t_n$ 

set  $t_n = t_n$ 

During the halving procedure all N equations return to Runge-Kutta with the same step size (i.e., the two-group multi-step mode is temporarily suspended).

If halving is not required, we proceed with a Cowell step, making the following test every other step to determine whether we may be able to double h. If

$$V \le \frac{(10^{-2}) * ER}{h^2}$$
 (A-20)

we may be able to double h.

We test further to see that

$$W = \frac{\max}{1 \le i \le IB} \left[ \frac{\begin{vmatrix} \Delta_{i0}^{VIII} \\ \max(|y_{i8}|, YMIN) \end{vmatrix}}{\max(|y_{i8}|, YMIN)} \right] \le \frac{10^{-2} * ER}{h^{2}}$$
 (A-21)

If the conditions of Eqs. (A-20) and (A-21) are satisfied for 16 steps (testing every other step) then the step-size h is doubled for all N equations in the Cowell mode. In addition, all of the data above the diagonal line is doubled in the Cowell mode using Eq. (A-23). We then proceed to a Cowell step using Eqs. (A-16) through (A-19) with step-size 2H. On the next entry, the halving and doubling tests are continued as before.

The doubling procedure requires a counting device and it works as follows. Initially, we set K = 1 at the beginning of the first Cowell step. The counter is advanced every other step if Eqs. (A-20) and A-21) are satisfied for the first IB equations. We accumulate the data required for doubling at alternate steps. If the tests fail at any point (assuming halving is not required) the counter is restarted if all N equations are being integrated at the same step size (i. e., TEST = VMIN = 1 initially). However, if the two-group mode is being used, then the doubling tests for the first IB equations are temporarily suspended (i. e., the step size for the first IB equations remains constant unless halving is later required). Thereafter, the doubling for the final N-IB equations is continued using the following test, that is, if

$$VAR = \frac{\max}{IB < i \le N} \left[ \frac{\begin{vmatrix} \Delta^{VII} \\ ii \end{vmatrix}}{\max(|y_{i8}|, YMIN)} \right] < \frac{10^{-2} * ER * VMIN}{h^{2}}$$
 (A-22)

for the remaining steps [K = 1(1)9], then the step size for the final N-IB equations is doubled. Also, for the final N-IB equations all of the data above the diagonal line is doubled in the Cowell mode. Note that VMIN of Eq. (A-22) is the initial value of VMIN for NTRY = 1. The counter K will be set to one for the next entry, and the doubling procedure will be restarted for the final N-IB equations.

The equations used for doubling in the Cowell mode are as follows. Let  $\Delta$  represent a difference (i.e.,  $\Delta^{\rm I} = \Delta^{\rm I}_{i7}$ ,  $\Delta^{\rm II} = \Delta^{\rm II}_{i6}$ ) at step-size h, and  $\triangle$  represent a difference at step-size 2b. Then we compute

$$\mathbf{A}^{\mathbf{I}} = 2\Delta^{\mathbf{I}} - \Delta^{\mathbf{II}}$$

$$\mathbf{A}^{\mathbf{II}} = 4\Delta^{\mathbf{II}} - (4\Delta^{\mathbf{III}} - \Delta^{\mathbf{IV}})$$

$$\mathbf{A}^{\mathbf{III}} = 8\Delta^{\mathbf{III}} - (12\Delta^{\mathbf{IV}} - 6\Delta^{\mathbf{V}} + \Delta^{\mathbf{VI}})$$

$$\mathbf{A}^{\mathbf{IV}} = 16\Delta^{\mathbf{IV}} - (32\Delta^{\mathbf{V}} - 24\Delta^{\mathbf{VI}} + 8\Delta^{\mathbf{VII}} - \Delta^{\mathbf{III}})$$

$$\mathbf{A}^{\mathbf{V}} = 5\mathbf{A}^{\mathbf{IV}} - (10\mathbf{A}^{\mathbf{III}} - 10\mathbf{A}^{\mathbf{II}} + 5\mathbf{A}^{\mathbf{I}}) + (y_{16}^{"} - y_{6}^{"})$$

$$\mathbf{A}^{\mathbf{VI}} = 6\mathbf{A}^{\mathbf{V}} - (15\mathbf{A}^{\mathbf{IV}} - 20\mathbf{A}^{\mathbf{III}} + 15\mathbf{A}^{\mathbf{II}} - 6\mathbf{A}^{\mathbf{I}}) - (y_{16}^{"} - y_{4}^{"})$$

$$\mathbf{A}^{\mathbf{VII}} = 7\mathbf{A}^{\mathbf{VI}} - (21\mathbf{A}^{\mathbf{V}} - 35\mathbf{A}^{\mathbf{IV}} + 35\mathbf{A}^{\mathbf{III}} - 21\mathbf{A}^{\mathbf{II}} + 7\mathbf{A}^{\mathbf{I}}) + (y_{16}^{"} - y_{2}^{"})$$

$$\mathbf{A}^{\mathbf{VIII}} = 8\mathbf{A}^{\mathbf{VII}} - (28\mathbf{A}^{\mathbf{VI}} - 56\mathbf{A}^{\mathbf{V}} + 70\mathbf{A}^{\mathbf{IV}} - 56\mathbf{A}^{\mathbf{III}} + 28\mathbf{A}^{\mathbf{II}} - 8\mathbf{A}^{\mathbf{I}}) - (y_{16}^{"} - y_{0}^{"})$$

$$'F(\mathbf{A}) = y_{8}^{'}/2\mathbf{h} + W_{0}y_{0}^{"} + W_{1}y_{2}^{"} + W_{2}y_{4}^{"} + W_{3}y_{6}^{"}$$

$$+ W_{4}y_{8}^{"} + W_{5}y_{10}^{"} + W_{6}y_{12}^{"} + W_{7}y_{14}^{"} + W_{8}y_{16}^{"}$$

$$''F(\mathbf{A}) = y_{8}^{'}/(2\mathbf{h})^{2} + 5y_{8}^{'}/2\mathbf{h} + V_{0}y_{0}^{"} + V_{1}y_{2}^{"} + V_{2}y_{4}^{"}$$

$$+ V_{3}y_{6}^{"} + V_{4}y_{8}^{"} + V_{5}y_{10}^{"} + V_{6}y_{12}^{"} + V_{7}y_{14}^{"} + V_{8}y_{16}^{"}$$
(A-23)

where the values  $y_8$ ,  $y_8'$ , and  $y_0''$ ,  $y_2''$ ,...,  $y_{16}''$  are the integrated values saved at alternate steps of the Cowell integration procedure. For the two-group mode h will be the value in cell H when the step size for all N equations is being doubled and R \* H when the step size for the final N-IB equations is being doubled.

#### A. 4 CALCULATION OF COEFFICIENTS

In a previous version of the subroutine (ASC DEQ2) " $F_{i10}$  and " $F_{i9}$  of Table A-1 were calculated by first forming " $F_{i5}$  and " $F_{i5}$  as follows:

$${}^{\prime}F_{i5} = y_{i4}^{\prime}/H - D_{0}y_{i4}^{\prime\prime} - D_{1}\Delta_{i4}^{I} - D_{2}\Delta_{i3}^{II} - D_{3}\Delta_{i3}^{III}$$
$$- D_{4}\Delta_{i2}^{IV} - D_{5}\Delta_{i2}^{V} - D_{6}\Delta_{i1}^{VI} - D_{7}\Delta_{i1}^{VII} - D_{8}\Delta_{i0}^{VIII}$$
(A-24)

$$^{\prime\prime}F_{i5} = y_{i4}/H^2 - C_0 y_{i4}^{\prime\prime} - C_2 \Delta_{i3}^{II} - C_4 \Delta_{i2}^{IV} - C_6 \Delta_{i1}^{VI} - C_8 \Delta_{i0}^{VIII}$$
 (A-25)

Then  $^{\prime\prime}F_{i10}$  and  $^{\prime}F_{i9}$  were calculated through the sequence as

$$^{\prime}F_{i K+1} = ^{\prime}F_{i K} + y_{i K}^{\prime \prime}$$
 (K = 5, 6,..., 8) (A-26)

$$^{\prime\prime}F_{iK+1} = ^{\prime\prime}F_{iK} + ^{\prime}F_{iK}$$
 (K = 5, 6,..., 9) (A-27)

However, by substituting ordinates  $(y_{iK}^{"})$  for differences  $(\Delta_{iK})$  (e.g.,  $\Delta_{i4}^{I} = y_{i5}^{"} - y_{i4}^{"}$ ;  $\Delta_{i3}^{II} = y_{i5}^{"} - 2y_{i4}^{"} + y_{i3}^{"}$ ) in Eqs. (A-24) and (A-25) and through the use of Eqs. (A-26) and (A-27) 'F<sub>i9</sub> and "F<sub>i10</sub> can be defined by Eqs. (A-5) and (A-6). Tables A-2 and A-3 give the value of  $V_{i}$  and  $W_{i}$ . Table A-4 gives the values of the other coefficients.

The coefficients for  $V_i$  and  $W_i$  were formed in double precision on the CDC 6600 and are included in subroutine DEQ4 as 20 digit octal constants. For example, using Table A-3

$$V_7 = (2 - 5D5 - 5D6 + 35D7 + 40D8 - C6 + 8C8)$$
 (A-28)

Table A-2. Coefficients for  $W_i$  for Eq. (A-5)

|                | i | D <sub>0</sub> | Di | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub> | D <sub>5</sub> | D <sub>6</sub> | D <sub>7</sub> | D <sub>8</sub> |
|----------------|---|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| w <sub>o</sub> |   |                |    |                |                |                | ```            |                |                | -1             |
| w <sub>i</sub> |   |                |    |                |                |                |                | - i            | í              | 8              |
| w <sub>2</sub> |   |                |    |                |                | -1             | 1              | 6              | -7             | -28            |
| w <sub>3</sub> |   |                |    | -1             | 1              | 4              | -5             | -15            | 21             | 56             |
| W <sub>4</sub> |   | -1             | 1  | 2              | -3             | -6             | 10             | 20             | -35            | -70            |
| w <sub>s</sub> | 1 |                | -1 | -1             | 3              | 4              | -10            | -15            | 35             | 56             |
| W <sub>6</sub> | i |                |    |                | -1             | -1             | 5              | 6              | -21            | -28            |
| w <sub>7</sub> | ı |                |    |                |                |                | -1             | -i             | 7              | 8              |
| w <sub>8</sub> | ı |                |    |                |                |                |                |                | -i             | -1             |

Table A-3. Coefficients for  $V_i$  for Eq. (A-6)

|                | 1 | D <sub>0</sub> | Di | D <sub>2</sub> | D <sub>3</sub> | D <sub>4</sub> | D <sub>5</sub> | D <sub>6</sub> | D <sub>7</sub> | D <sub>8</sub> | c <sub>0</sub> | c <sub>2</sub> | C <sub>4</sub> | c <sub>6</sub> | c <sub>8</sub> |
|----------------|---|----------------|----|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| v <sub>o</sub> |   |                |    |                |                |                |                |                |                | -5             |                |                |                |                | -1             |
| v <sub>i</sub> |   |                |    |                |                |                |                | -5             | 5              | 40             |                |                |                | -1             | 8              |
| v <sub>2</sub> |   |                |    |                |                | -5             | 5              | 30             | -35            | -140           |                |                | - i            | 6              | -28            |
| v <sub>3</sub> |   |                |    | -5             | 5              | 20             | -25            | -75            | 105            | 280            |                | -1             | 4              | -15            | 56             |
| v <sub>4</sub> |   | -5             | 5  | 10             | -15            | -30            | 50             | 100            | -175           | -350           | -1             | 2              | -6             | 20             | -70            |
| v <sub>5</sub> | 4 |                | -5 | 5              | 15             | 20             | -50            | -75            | 175            | 280            |                | -1             | 4              | -15            | 56             |
| v <sub>6</sub> | 3 |                |    |                | -5             | -5             | 25             | 30             | -105           | -140           |                |                | -1             | 6              | -28            |
| v <sub>7</sub> | 2 |                |    |                |                |                | -5             | -5             | 35             | 40             |                |                |                | -1             | 8              |
| v <sub>8</sub> | 1 |                |    |                |                |                |                |                | -5             | -5             |                |                |                |                | -1             |

Table A-4. Coefficients for N<sub>1</sub>, N<sub>1</sub>, B<sub>1</sub>, B<sub>1</sub>, D<sub>1</sub>, and C<sub>1</sub>

| ,  |                       |                    |                      |                      |                  |                  |
|----|-----------------------|--------------------|----------------------|----------------------|------------------|------------------|
| 8  | 3250433<br>53222400   | 25713<br>89600     | -330157<br>159667200 | -8183<br>1036800     | _2497<br>7257600 | 317<br>22809600  |
| 7  | $\frac{8183}{129600}$ | 1070017<br>3628800 | -407<br>172800       | -33953<br>3628800    | 2497<br>3628800  | 0                |
| 9  | 33953<br>518400       | 5257<br>17280      | -9829<br>3628800     | <u>-275</u><br>24192 | 191<br>120960    | -289<br>3628800  |
| 5  | 275<br>4032           | 19087<br>50480     | <u>- 19</u><br>6048  | -863<br>60480        | -191<br>60480    | 0                |
| 4  | 863<br>12096          | 95<br>288          | -221<br>60480        | -3<br>160            | -11<br>1440      | 31<br>60480      |
| ю  | 3<br><u>40</u>        | 251<br>720         | -1<br>240            | -19<br>720           | 11<br>720        | 0                |
| 2  | 19<br>240             | rsl∞               | <u>-1</u><br>240     | - <u>1</u><br>24     | $\frac{1}{24}$   | _1<br><u>240</u> |
| 1  | 1<br>12               | 5<br>12            | 0                    | -1<br>12             | <u>-1</u><br>12  | 0                |
| 0  | 1 12                  | 5.                 | 1 12                 | 7 2                  | -11              | 1 12             |
| 11 | Z,                    | ۲.                 | B.                   | n.<br>1.             | Ď.               | O.L              |

#### APPENDIX B

FORTRAN IV SOURCE LANGUAGE FOR DEQ4 (CDC 6400-6600)

```
(8TH ORDER) R.K./GAUSS JACKSON (4-18-67) J.F. HOLT
C
      ASC DEQ4
                                                                          DEQ40001
      SUBROUTINE DEQ4(N, Il, IZ, IA, IB, IR, ER, HMIN, HMAX, YMIN, DAUX, TEST, IDH, DEQ40002
     1 NTRY, JHH, JHD, VMIN, VMAX,
                                                                           DEQ40003
     2 T+H+Y+YP+Y2P+T1+T2+T3+T4+
                                                                          DEQ40004
     375.76,77,
                                                                           DE040005
     4 F2P,F1P,DLT1,DLT2,DLT3,DLT4,DLT5,DLT6,DLT7,DLT8)
                                                                           DEQ40006
      DATA A0,A1,A2,A3,A4,A5,A6,A7,A8/O17145252525252525252,O17145252525DEQ40007
     +252525252,017145042104210421042,017144631463146314631,017144441671DEQ40008
     #441671441,017144272727272727272,017144142124345450046,017144024770DEQ40009
     *525655446,017137642352047260270/
                                                                           DEQ40010
      DATA APO, API, APZ, AP3, AP4, AP5, AP6, AP7, AP8/017174000000000000000000170EQ40011
     +166525252525252525,0171660000000000000000017165447644764476447,017DEQ40012
     *165216161616161616,017165031250377565231,017164674152142466774,017DEQ40013
     *164557436021207661,017164456716206452330/
      DATA B0,B1,B2,B3,B4,B5,B6,B7,B8/017145252525252525252,00000000000DE040015
     +000000000,060673567356735673567,06067356735673567,060700410313DEQ40016
     +556630410,060701441671441671441,060702347642525026560,060703132207DEQ40017
     *010257763,060703607613672523307/
                                                                           DE040018
      *63252525252525257,060642525252525252525<sub>0</sub>6065117511751175,060DEQ40020
     *65314631463146J146,060660543327060160543,060662134066134066134,060DEQ40021
     *663153172725033257•060663753007252122331/
                                                                          DEQ40022
      DATA w0,w1,w2,w3,w4,w5,w6,w7,w8/017045506100743107612,060700423525DEQ40023
     *521066740,017124634350133463213,060633425400145555331,017174000000DEQ40024
     *000000000-017204216517771511122+017177663070575106313+017204007354DEQ40025
     *252256711,017177776456357607156/
                                                                          DEQ40026
      DATA V0, V1, V2, V3, V4, V5, V6, V7, V8/017066772406536075467,060653305233DEQ40027
     *301450700,017145726271235706017,060612435756631615770,017214634266DEQ40028
     #567637354,U17224266406711557615,017215636363515616135,017214022662DEQ40029
     *701160620,017177770713144246212/
                                                                          DEQ40030
      THE CALLING SEQUENCE CAN BE SIMPLIFIED BY PUTTING ALL PARAMETERS EXCEPT NTRY AND DAUX IN LABELED COMMON. (SEE EXAMPLE BELOW)
                                                                          DEQ40031
                                                                          DEQ40032
      HOWEVER, THE DIMENSION STATEMENTS MUST BE CHANGED, OR INCLUDED
                                                                           DEQ40033
      IN THE LABELLED COMMON STATEMENT.
                                           THE NEW CALLING SER. RECOMES
C
                                                                          DEQ40034
      CALL DEG4 (NTRY DAUX)
                                                                           DEQ40035
      ALSO, THE SUBROUTINE STATEMENT (SEZ ABOVE) MUST BE CHANGED TO
C
                                                                           DEQ40036
C
      SUBROUTINE DEW4 (NTRY DAUX)
                                                                           DEQ40037
      EXAMPLE FOLLOWING SHOWS LABELED COMMON FOR SIMPLIFIED CALLING SEQ.DEQ40038
      COMMON/CDEQ/N, II, T2, IA, IB, IH, ER, HMIN, HMAX, YMIN, TEST, IDH, IRK, JHH,
C
                                                                          DEQ40039
                  JHD, VMIN, VMAX, T, H, Y, YP, Y2P, T1, T2, T3, T4, T5, T6, T7,
C
                                                                           DEQ40040
                  F2P,F1P,DLT1,DLT2,DLT3,
     2
                                                                           DEQ40041
```

DEQ40042

DLT4, DLT5, DLT6, ULT7, DLT8

3

```
DEQ40043
      DIMENSION Y( 63) + YP( 63) + Y2P( 63) + T1( 63) + T2( 63) + T3( 63) +
                                                                             DEQ40044
                 T4( 63),T5( 63),T6( 63),T7( 63),
Ċ
                                                                             DEQ40045
                F2P( 63),F1P( 63),DLT1( 63),DLT2( 63),
     2
                 DLT3( 63),DLT4( 63),DLT5( 63),DLT6( 63),DLT7( 63),
                                                                             DEQ40046
C
     3
                                                                             DEQ40047
                 DLT8( 63)
                                                                             DEQ40048
      DIMENSION Y(2), YP(2), YZP(2), T1(2), T2(2), T3(2), T4(2)
                                                                             DEQ40049
      DIMENSION T5(2) . T6(2) . T7(2)
                                                                             DEQ40050
      DIMENSION F2P(2),F1P(2)
      DIMENSION DLT1(2).DLT2(2).DLT3(2).DLT4(2).DLT5(2).DLT6(2)
                                                                             DEQ40051
                                                                             DEQ40052
      DIMENSION DLT7(2), DLT8(2)
C***** PRIOR TO THE SETUP ENTRY TO DEG4. (DEG4 ENTRY CALLS DAUX) DEG40054
C####
      **CDEQ40055
           WITH THE DATA ALLOCATION SCHEME OF DEGA, IT IS POSSIBLE FOR
                                                                             DEQ40056
C
      THE USER TO INTEGRATE THE FIRST P EQUATIONS SIMPLY BY CHANGING N. DEQ40057
C
      OF COURSE, THIS ASSUMES THAT THE FIRST P EQUATIONS DO NOT DEPEND
                                                                             DEQ40058
C
      ON THE FINAL N-P EQUATIONS. (SEE WRITE-UP FOR FURTHER DETAILS.)
                                                                             DEQ40059
C
                                                                             DEQ40060
C
            IS THE NUMBER OF EQUATIONS.
                                                                             DEQ40061
            IS AN OPTION. SUCH THAT IF
      11
            II IS G.E. +n, Y2P = F(X,Y,YP) (I.E., FUNCTION OF 1ST DERIV.)DEQ40062
C
                        0, Y2P = F(X,Y)
                                                                             DEQ41063
               IS L.T.
              AN OPTION. SUCH THAT IF
C
                                                                             DEQ40064
      12
            TS
                                                                             DEQ40065
                  G.E. +0, VARIABLE STEP-SIZE MODE IS USED.
000000
            IZ IS
                        O. FIXED STEP-SIZE MODE IS USED.
                                                                             DEQ40066
                 INDICATOR SWITCH TO THE USER DURING EXIT TO DAUX SUB.
                                                                             DEQ40067
      IΔ
            IS AN
                  FOR 1ST (1.2.3 IF R.K.) PASS THRU DAUX.
                                                                             DEQ40068
            [A=-1
                  FOR FINAL PASS THRU DAUX. (APPLIES FOR EACH STEP.)
            IA=+1
                                                                             DEQ40069
                  IN THE COWELL MODE, IA =- 1 WHEN THE DERIVATIVES OF THE
                                                                             DEQ40070
            NOTE
                                                                             DEQ40071
00000000000000
                  PREDICTOR ARE BEING ASKED FOR, AND IA=+1 WHEN THE
                  DEHIVATIVES OF THE CORRECTOR ARE BEING ASKED FOR.
                                                                             DEQ40072
            ONLY THE 1ST IB (L.E. N) EQNS. ARE TESTED DURING ERROR TESTS. DEQ40073 FOR THE TWO GROUP MODE: THE FIRST IB EQNS ARE INTEGRATED AT DEQ40074
       ΙB
            STEP-SIZE H. AND THE FINAL N-IB EQNS ARE INTEGRATED AT STEP-
                                                                             DEQ40075
            SIZE R*H (R= 1., 2., 4., 8., ETC. DEPENDING ON THE INITIAL
                                                                             DEQ40076
            VALUES OF TEST AND VMIN).
                                                                             DEQ40077
                                         (SEE TEST AND VMIN)
            FOR A GIVEN STEP-SIZE H, COWELL STEP = H, R.K. STEP = H/IR.
                                                                             DEQ40078
       IR
                                                                             DEQ40079
            RELATIVE ERROR CPITERIA. (SET ER=1.E=9 OR LESS)
       ER
       HMIN IS THE MINIMUM STEP-SIZE ALLOWED. (ABSOLUTE VALUE) HMAX IS THE MAXIMUM STEP-SIZE ALLOWED. (ABSOLUTE VALUE)
                                                                             DEQ40080
                                                                             DEQ40081
       YMIN IS THE MIN. ABS. VALUE OF Y(I) ALLOWED FOR THE ERROR TEST.
                                                                             DEQ40082
       DAUX IS AN EXTERNAL SUB. SUPPLIED BY USER TO EVAL. THE 2ND DERIV.
                                                                             DEQ40083
                                                                             DEQ40084
       TEST AFTER EACH INTEGRATION STEP,
```

```
TEST WILL BE +1. IF THE INTEGRATION WAS A RUNGE-KUTTA STEP. DEQ40085 TEST WILL BE -1. IF THE INTEGRATION WAS A COWELL STEP. DEQ40086 NOTE INITIALLY SET TEST=1. FOR NORMAL INTEGRATION. FOR TWO-DEQ40087
C
                            GROUP MODE SET TEST G.E. 2. (MAX R = 2. ** (TEST-1.)
                                                                                                                      -DEQ40088
         IDH AFTER EACH INTE RATION STEP.
                                                                                                                      DEQ40089
                                                                                                                    ---DEQ40090-
                  IDH WILL BE +2 IF THE STEP-SIZE HAS BEEN HALVED.
C IDH WILL BE +3 IF THE STEP-SIZE HAS BEEN DOUBLED

C IDH WILL BE +4 IF H FOR FINAL N-IB EQNS. DOUBLED.

C NTRY IS A SPECIAL OPTION TO ALLOW MULTIPLE ENTRIES.

C NTRY=I. SETUP ENTRY. (STORE INITIAL COND. PRIOR TO ENTRY.)

C NTRY=Z. NORMAL P.K./CAUSSLJACKSON INTEGRATION.
                                                                                                                      DEQ40092
                                                                                                                     DEQ40093
                                                                                                           DEQ40095
                                                                                                                     DEQ40096
C
                  NTRY=3+ INTEGRATE IN R.K. MODE EXCLUSIVELY.
                                                                                                                      DEQ40097
C. JHH#13-B*IR R.K.-STERS ARE USED DURING THE HALVING PROCEDURE. DEQ40099
C. JHH#3- BETURN TOTT (I) AFTER CONELL ATTEMPT TO T (I+I), 8*IR RKDEQ40100
C. SEE WRITE-UP FOR FURTHER DETAILS CONCERNING TAILS CONCERNING
                  IS AN OPTION TO CONTROL THE HALVING PROCEDURE.
    JHD IS AN OPTION TO CONTROL THE DOUBLING PROCEDURE.

NOTE JHD IS NO LONGER USED IN DEQ4. ALL DOUBLING IS DONE DEQ40103

IN THE COWELL MODE BY THE ACCUM. OF ALTERNATE DATA. DEQ40104

VMIN IS THE LOC OF 1 CELL USED BY DDEQ FOR HALVING/DOUBLING TESTDEQ40105

NOTE INITIALLY SET VMIN=1.EP (P=2.3....5) FOR TWO-GROUP MODEDEQ40106
                  IS THE LOC OF 1 CELL USED BY DDEG FOR HALVING DOUBLING TESTDEGAGIOT IS THE LOCATION OF THE INDEPENDENT VARIABLE T(I). DEGAGIOS
                  IS THE LOCATION OF THE INITIAL AND CURRENT STEP-SIZE. IS THE LOCATION OF N DEPENDENT VARIABLES.
C
                                                                                                                      DEQ40109
                                                                                                                      DEQ40110
     YP IS THE LOCATION OF N 1ST DERIVATIVES.
                  IS THE LOCATION OF N 1ST DERIVATIVES.
                                                                                                                      DEQ40111
                                                                                                                      DEQ40112
     TI THRU TO ARE VECTORS OF DIMENSION N USED BY THE SUBROUTINE.

F2P, FIP, AND DLTI THRU DLTB ARE VECTORS OF DIMENSION N.
                                                                                                                      DEQ40113
                                                                                                                      DEQ40114
             SETUP FOR DEG4 SUBROUTINE. CALL DEG4 (N. 11:12.... DLT7:DLT8)
                                                                                                                      DEQ40115
          GO TO (1,2,3),NTRY
                                                                                                                      DEQ40116
         RXK=TEST
IF(RXH=1.)380:381:381
RXH=1.
IKR=1
                                                                                                                      DEQ40117
                                                                    DE040118
                                                                                                                      DEQ40118
  380 RXH=1.
                                                                                                                      DE040120
  381
                                                                                                                      DEQ40121
          IF (VMIN-1.) 382,383,383
                                                                                                                      DEQ40122
          VMIN=1000,
  382
                                                                                                                     DEQ40123
  383
          VARX=VMIN
                                                                                                                      DEQ40124
 RXA=RXH.
                                                                                                                      :DEQ40125
```

|            | TST=+],                                      | DEQ40127 |
|------------|----------------------------------------------|----------|
|            | NSTR1==1                                     | DE040128 |
|            | IF(N)391,390,392                             | DEQ40129 |
| 390        | N=1                                          | DEQ40130 |
| 391        | N=IABS(N)                                    | CEQ40131 |
| 392        | IF(N-TB)393.394,304                          | DEQ40132 |
| 393        | IH=N                                         | DEQ40133 |
| 394        | IF (IR)400,400,410                           | DEQ40134 |
| 400        | I8=N                                         | DEQ40135 |
| 410        | IF (IR)420,420,430                           | DEQ40136 |
| 420        | IR=16                                        | DEQ40137 |
| 430        | IF(H)432,431,432                             | DEQ40138 |
| 431        | H=.01                                        | DEQ40139 |
| C431       | H=.01D0                                      | DEQ40140 |
| 432        | R=IR                                         | DEQ40141 |
|            | H=H/R                                        | DEQ40142 |
|            | HA=H                                         | DEG40143 |
|            | IF (ER) 433,433,434                          | DEQ40144 |
| 433        | ER=1.E-11                                    | DEQ40145 |
| C433       | ER=1.D-11                                    | DE040146 |
| 434        | HH=H*H                                       | DEQ40147 |
|            | N]=N                                         | DEQ40148 |
|            | IF (YMIN) 439,440,450                        | DEQ40149 |
| 440        | YMIN=1.                                      | DE040150 |
| C440       | YMIN=1.D0                                    | DEQ40151 |
| 439        | YMIN= ABS(YMIN)                              | DEQ40152 |
| C439       | YMTN=DABS(YMIN)                              | DEQ40153 |
| 450<br>460 | IF (HMAX) 460, 460, 470                      | DEQ40154 |
| C460       | HMAX=1.                                      | DE040155 |
| 470        | HMAX=1.00                                    | DEQ40156 |
| 471        | IF (HMIN) 471,471,472                        | DEQ40157 |
| C471       | HMIN=1.E-5                                   | CEQ40158 |
| 472        | HMIN=1.0-5                                   | DE040159 |
| 712        | VMIN=ER/(HH*100.)<br>VMAX=VMIN*100000.       | DEQ40160 |
|            |                                              | DE040161 |
| С          | I Wang T                                     | DEQ40162 |
| C          | IA=-1 FOR 1ST (1,2,3 IF R.K.) PASS THRU DAUX | DEQ40163 |
|            | NHH=+1<br>CALL DAUX                          | DE047164 |
| С          |                                              | DE040165 |
| C          | SAVE INITIAL CONDITIONS FOR RESTART TZ=T     | DEQ40166 |
|            | DO 473 I=1•N1                                | UEQ40167 |
|            | V TI 1-11114                                 | DEQ40168 |

```
DEQ40169
      T5(I)=Y(I)
      T6(I)=YP(I)
                                                                              DEQ40170
 473
      T7(I)=Y2P(I)
                                                                              DEQ40171
      IF (HMAX"HMIN) 261,474,261
                                                                              DEQ40172
 474
      NHH==1
                                                                              DEQ40173
        EXIT FROM DEG2 SETUP
C
                                                                              DEQ40174
      GO TO 261
                                                                              DEQ40175
C
        NORMAL INTEGRATION ENTRY.
                                     CALL RKCW
                                                                              DEQ40176
C
      ENTRY RKCW
                                                                              DEQ40177
      INTEGRATE 1 STEP (H OR H/IR) IN THE COWELL/R.K. MODE
C
                                                                              DEQ40178
 2
                                                                              DEQ40179
      Nl=N
      IF (TEST) 900 + 500 + 500
                                                                              DEQ40180
        R.K. STEP (BR R.K. STEPS)
                                                                              DE040181
 500
      IDH=1
                                                                              DEQ40182
501
      IF (IKR) 505,502,502
                                                                              DEQ40183
        R.K. STEP (INITIAL STARTING PROCEDURE)
                                                                              DEQ40184
C
 502
                                                                              DEQ40185
      K=1
      TEST=TST
                                                                              DEQ40186
                                                                              DEQ40187
      IKR=-1
 505
      GO TO (510,520,530,540,550,560,570,580,590),K
                                                                              DEQ40188
      K=1
C
                                                                              DEQ40189
 510
      DO 511 I=1.N1
                                                                              DEQ40190
      DLT1(I)=Y2P(I)
                                                                              DEQ40191
      F1P(I) = W0 + Y2P(I)
                                                                              DEQ40192
 511
      F2P(I) = V0 + Y2P(I)
                                                                              DEQ40193
 512
                                                                              DEQ40194
      K=K+1
 513
      IF(K-10)3,600,3
                                                                              DEQ40195
        SPECIAL R.K. INTEGRATION ENTRY.
                                            (NTRY=3)
                                                                              DEQ40196
      ENTRY RK
C
                                                                              DEQ40197
C
        INTEGRATE 1 STEP (H, OR H/IR) IN THE RUNGE-KUTTA MODE.
                                                                              DE040198
        NTRY=3 IS A SPECIAL USAGE. INTEGRATES ONLY IN R.K. MODE
C
                                                                              DEQ40199
 3
      N1=N
                                                                              DEQ40200
                                                                              DEQ40201
      H]≃H
      HH=H*H
                                                                              DEQ40202
      H2=H/2.
                                                                              DEQ40203
      H3=HH/2.
                                                                              DEQ40204
                                                                              DEQ40205
      H4=H3/2.
                                                                              DE040206
      H5=H4/2.
      H6=H/6.
                                                                              DEQ40207
      DO 100 I=1,N1
                                                                              DEQ40208
      T1(I)=Y(I)
                                                                              DEQ40209
      T2(I)=YP(I)
                                                                              DEQ40210
```

1

```
T3(I) = Y2P(I)
                                                                                 DE040211
 100
       T4(I)=Y2P(I)
                                                                                 DEQ40212
       T=T+H2
 110
                                                                                 DEQ40213
       IA=-1
                                                                                 DEQ40214
       IF (I1)300,200,200
                                                                                 DEQ40215
C
         R.K. STEP FUR Y2P=F(X,Y,YP)
                                                                                 DEQ40216
 200
      DO 210 I=1.N1
                                                                                 DEQ40217
C
       Y2P=F(X,Y,YP) IF I1=+
                                                                                 DEQ40218
       Y(I)=T1(I)+H2+T2(I)+H5+Y2P(I)
                                                                                DEQ40219
 210
      YP(I) = T2(I) + H2 + Y2P(I)
                                                                                DEQ40220
      CALL DAUX
                                                                                DEQ40221
      DO 220 I=1:N1
                                                                                DEQ40222
      T3(I) = T3(I) + Y2P(I)
                                                                                DEQ40223
       T4(I)=T4(I)+2.4Y2p(I)
                                                                                DEQ40224
 220
      YP(I)=T2(I)+H2*Y2P(I)
                                                                                DEQ40225
      CALL DAUX
                                                                                DEQ40226
      DO 230 I=1:N1
T3(I)=T3(I)+Y2P(I)
                                                                                DEQ40227
                                                                                DEQ40228
      T4(I)=T4(I)+2.*Y2P(I)
                                                                                DEQ40229
      Y(I) = T1(I) + H1 + T2(I) + H3 + Y2P(I)
                                                                                DEG40530
 230
      YP(I)=T2(I)+H1+Y2P(I)
                                                                                DEQ40231
      T=T+H2
                                                                                DEQ40232
      CALL DAUX
                                                                                DEQ40233
      DO 240 I=1.N1
                                                                                DEQ40234
 240
      T4(I) = T4(I) + Y2P(I)
                                                                                DEQ40235
 250
      DO 260 I=1,N1
                                                                                DEQ40236
      Y(I) = T1(I) + H1 + (T2(I) + H6 + T3(I))
                                                                                DEQ40237
 260
      YP(I)=T2(I)+H6*(T4(I))
                                                                                DEQ40238
      IA=+1
                                                                                DEQ40239
C
         IA=+1 FOR FINAL PASS THRU DAUX
                                                                                DEQ40240
      CALL DAUX
                                                                                DEQ40241
 262
      TEST=TST
                                                                                DEQ40242
 261
      RETURN
                                                                                DEQ40243
         R.K. STEP FUR Y2P=F(X.Y)
C
                                                                                DEQ40244
 300
      DO 310 I=1.N1
                                                                                DE040245
      Y2P=F(X+Y) IF I1==
C
                                                                                DEQ40246
      Y(I)=T1(I)+H2*T2(T)+H5*Y2P(I)
 310
                                                                                DEQ40247
      CALL DAUX
                                                                                DEQ40248
      DO 320 I=1.N1
                                                                                DEQ40249
      T3(I) = T3(I) + 2 + 472p(I)
                                                                                DEQ40250
 320
      T4(I)=T4(I)+4.4Y2p(I)
                                                                                DEQ40251
      T=T+H2
                                                                                DEQ40252
```

íć

```
DEQ40253
      DO 330 I=1:N1
      Y(I) = TI(I) + HI + T2(I) + H3 + Y2P(I)
                                                                                  DEQ40254
 330
CALL DAUX
DD 340 I=1,N1
340 T4(I)=T4(I)+Y2P(I)
GO TO 250
                                                                                 :DEQ40255:
                                                                                 DE040256
                                                                                 DEQ40257
                                                                                  DEQ40258
                                                                                  DEQ40259
      K=2
                                                                                  DEQ40260
 520
      DO 521 I=1:N1
                                                                             DEQ40261
      DUTALIDADLT1(I)=8.*Y2P(I)
     DLT2(1) =Y2P(1)
                                                                                  DEQ40262
      FIP (1) #FIP (1) +WI-Y2P(1)
                                                                                 DE040263
                                                                                 DEQ40264
      F2P(1) = F2P(1) + V1 + Y2P(1)
                                                                                  DEQ40265
       GO TO 512
                                                                                  DEQ40266
      K=3
530 DO: 531 I=1 N1
DLT1 (I) =DLT1 (I) +28. = Y2P(I)
DLT2 (I) =7. «Y2P(I) +DLT2 (I)
                                                                                 -DEQ40267
                                                                                 -DEQ40268
      DLT3(T) =7.4Y2P(1)-DLT2(1)
                                                                                 DEQ40269
                                                                                  DEQ40270
                                                                                  DEQ40271
       F1P(I)=F1P(I)+W2*Y2P(I)
       F2P(I) = F2P(I) + V2 + Y2P(I)
                                                                                  DEQ40272
 531
      -GO: TO 512
                                              :DE040273
C K#4
540 00 541 [#] •N1
                                                                                  DEQ40274
                                                                              DEQ40275
                                                                                  DEQ40276
       DLT1(I) =DLT1(I) -56. *Y2P(I)
       DLT2(I) =DLT2(I) -21. *Y2P(I)
                                                                                  DEQ40277
                                                                                  DEQ40278
       DLT3(I)=DLT3(I)-6.*Y2P(I)
                                                                               ...DEQ40279
 DLT4(1)=Y2P(I)
F1P(I)=F1P(I)+W3*Y2P(I)
                                                                                  DEQ40280
      F2P(I) =F2P(I) +V3*Y2P(I)
                                                                                  DEQ40281
                                                                                  DE040585.
       GO TO 512
                                                                                  DEQ40283
       K=5
C
                                                                                  DEQ40284
 550
       DO 551 I=1.N1
                                                                                  DEQ40285
      :DLT1(I) =DLT1(I) +70. *YZP(I)
                                                                                  DEQ40286
      DLT2(I) =DLT2(I) +35. #Y2P(I)
    DLT3(1) =DLT3(1) +15.*Y2P(1)
DLT4(1) =5.*Y2P(1) -DLT4(1)
                                                                                 _DEQ10287
                                                                                  DE040288
                                                                                  DEQ40289
       DLT5(I)=Y2P(I)
                                                                                  DEQ40290
       F1P(I)=F1P(I)+W4*Y2P(I)+YP(I)/HA
                                                                                  DEQ40291
       F2P(I)=F2P(I)+V4*V2P(I)+(5;*YP(I)/HA)+(Y(I)/(HA*HA))
 551
                                                                                  DEQ40292
       GO TO 512
                                                                                 DEQ40293
       K=6
C K=6
=560 00 561 T=1 N1
                                                                                  DEQ40294
```

|          | DLT1(I)=DLT1(I)-56.*Y2P(I)             |                                       | DEQ40295 |
|----------|----------------------------------------|---------------------------------------|----------|
|          | DLT2(I)=DLT2(I)-35. *Y2P(I)            |                                       | DEQ40296 |
|          | DLT3(I)=DLT3(I)-20.*Y2P(I)             |                                       | DEQ40297 |
|          | DLT4(I)=DLT4(I)-10.*Y2P(I)             |                                       | DEQ40298 |
|          | DLT5(I)=DLT5(I)-4.*Y2P(I)              |                                       | DEQ40299 |
|          | DLT6(I)=Y2P(I)                         |                                       | DEQ40300 |
|          | F1P(I) = F1P(I) + w5 + y2P(I)          |                                       |          |
| 561      | F2P(I) = F2P(I) + V5 + V2P(I)          |                                       | DEQ40301 |
| 201      | GO TO 512                              |                                       | DEQ40302 |
| С        | K=7                                    |                                       | DEQ40303 |
| 570      | · ·                                    |                                       | DEQ40304 |
| 570      | D0 571 I=1 • N1                        |                                       | DEQ40305 |
|          | DLT1(I)=DLT1(I)+28.*Y2P(I)             |                                       | DEQ40306 |
|          | DLT2(I)=DLT2(I)+21.*Y2P(I)             |                                       | DEQ40307 |
|          | $DLT3(I) = DLT3(I) + 15 \cdot *Y2P(I)$ |                                       | DEQ40308 |
|          | DLT4(I) = DLT4(I) + 10.*Y2P(I)         |                                       | DEQ40309 |
|          | DLT5(I) = DLT5(I) + 6.*Y2P(I)          |                                       | DEQ40310 |
|          | DLT6(I)=3.*Y2P(I)-DLT6(I)              |                                       | DEQ40311 |
|          | DLT7(I)=Y2P(I)                         | 1                                     | DEQ40312 |
| <b>-</b> | F1P(I) = F1P(I) + w6*y2P(I)            | f                                     | DEQ40313 |
| 571      | F2P(I) = F2P(I) + V6 + Y2P(I)          | · · · · · · · · · · · · · · · · · · · | DEQ40314 |
|          | GO TO 512                              | !                                     | DEQ40315 |
| С        | K=8                                    | Į.                                    | DEQ40316 |
| 580      | D0 581 I=1•№1                          | 1                                     | DEQ40317 |
|          | DLT1(I)=DLT1(I)-8.*Y2P(I)              | · · · · · · · · · · · · · · · · · · · | DEQ40318 |
|          | DLT2(I)=DLT2(I)-7.*Y2P(I)              | 1                                     | DEQ40319 |
|          | DLT3(I)=DLT3(I)-6.*Y2P(I)              |                                       | DEQ40320 |
|          | DLT4(I)=DLT4(I)-5.*Y2P(I)              | · ·                                   | DEQ40321 |
|          | DLT5(I)=DLT5(I)-4.*Y2P(I)              |                                       | DEQ40322 |
|          | DLTo(I)=I)LTo(I)-3.*Y2P(I)             |                                       | DEQ40323 |
|          | DLT7(I) = DLT7(I) - 2.*Y2P(I)          |                                       | DEQ40324 |
|          | DLT8(I)=Y2P(I)                         |                                       | DEQ40325 |
|          | F1P(I)=F1P(I)+W7*Y2P(I)                |                                       | DEQ40326 |
| 581      | F2P(I) = F2P(I) + V7 + Y2P(I)          |                                       | DE040327 |
|          | GO TO 512                              |                                       | DEQ40328 |
| С        | K=0                                    |                                       | DEQ40329 |
| 590      | D0 591 I=1+N1                          |                                       | DEQ40330 |
| •        | DLT1(I)=DLT1(I)+Y2P(I)                 |                                       | DEQ40331 |
|          | DLT2(I)=DLT2(I)+Y2P(I)                 |                                       | DEQ40331 |
|          | DLT3(I)=DLT3(I)+Y2P(I)                 |                                       | DEQ40333 |
|          | DLT4(I)=DLT4(I)+Y2P(I)                 |                                       | DEQ40334 |
|          | DLT5(I)=DLT5(I)+Y2P(I)                 |                                       | DEQ40334 |
|          | DLT6(I)=DLT6(I)+Y2P(I)                 |                                       |          |
|          | 17410111 TUG 10111 17 17 111           |                                       | DEQ40336 |
|          |                                        |                                       |          |

```
DEQ40337
      DLT7(I) = DLT7(I) + Y2P(I)
      DLT8(I) = Y2P(I) - DLT8(I)
                                                                             DEQ40338
      F1P(I)=F1P(I)+W8+Y2P(I)
                                                                             DEQ40339
     F2P(I) =F2P(I) +V8#Y2P(I)
                                                                             DEQ40340
                                                                             DEQ40341
      GO TO 512
C---ENTRY CW
                                                                             DEQ40342
                                                                              DEQ40343
      K=1
 600
                                                                             DEQ40344
      KC=1
                                                                             DEQ40345
                                                   ... KS=1
                                                                             -DEQ40346
      RAT=1.
                                                                             DEQ40347
   NH2=NHH
                                                                              DEQ40348
                                                                              DEQ40349
                                                                              DEQ40350
      1+=EHUM
      TEST FOR HALVING AND DOUBLING TOHEL IF STEP-SIZE HAS NOT CHANGED
                                                                             DEQ40351
C.
                                                                             DE040352
C
                                                        900 IDH=1
                      DEQ40353
      IC=IB+1
                                                                              DEQ40354
      IF (I2)1000.901.501
                                                                              DEQ40355
 901
      IF (NH2) 9011,9010,9010
                                                                              DEQ40356
                                                                              DEQ40357
 9010 DO 902 I=1,IB
      DO 902 1=1,18
IF( ABS(DLT2(I)/AMAX1( ABS(Y(I)), YMIN)).GE.VMAX) GO TO 1100
                                                                             :DEQ40358.
                                                                             DEQ40359
C
      IF (DABS (DLT2(I) /DMAX1 (DABS (Y (I)) , YMIN) ) . GE ZYMAX) GO. TO 1100
                                                                              DEQ40360
902
      CONTINUE
      IF 2.*H G.T. HMAX, STOP DOUBLING TEST
                                                                              DEQ40361
C
 9011 IF(NDUB)980,9020,9020
                                                                              DEQ40362
                                                                              DEQ40363
 9020 IF(NVR)980,980,9021
      IF(RAT-1.)9022,9022,980
                                                                              DEQ40364
 9021
 9022 IF(KS) 954, 954, 9023
                                                                              DEQ40365
 9023 DO 903 I=1, IB
                                                                              DEQ40366
      IF( ABS(DLT2(1)/AMAX1( ABS(Y(1)),YMIN)).GE.VMIN) GO TO 980
                                                                              DEQ40367
      IF (DABS (DLT2(I) /DMAX1 (DABS (Y(I)) . YMIN)) . GE. VMIN) GO TO 980
                                                                              DEQ40368
 903
      CONTINUE
                                                                              DEQ40369
      TEST FURTHER FOR DOUBLING.
C
                                                                              DEQ40370
                                                                              DEQ40371
      DO 904 I=1, IB
      IF! ABS(DLT1(I)/AMAX1( ABS(Y(I)), YMIN)).GE.VMIN) GO TO 980
                                                                              DEQ40372
      IF(DABS(DLT1(I)/DMAX1(DABS(Y(I)),YMIN)).GE.VMIN) GO TO 980
                                                                              DEQ40373
C
                                                                              DEQ40374
 904
      CONTINUE
      IF HERE, CURRENT STEP O.K. FOR DOUBLING.
                                                                              DEQ40375
C
                                                                              DEQ40376
 950
      TMP4=H+H
      IF ( ABS(TMP4).GT.HMAX) GO TO 3000
                                                                              DEQ40377
      FIF (DABS (TMP4) .GT. HMAX) GO TO 3000
                                                                             DEQ40378
```

```
C
      KJ=1 (SAVE ALL EQUATIONS FOR DOUBLING)
                                                                              DEQ40379
      KJ=1
                                                                              DEQ40380
 952
      KA=KC
                                                                              DEQ40381
      KC=KC+1
                                                                              DEQ40382
      GO TO (2010,2020,2030,2040,2050,2060,2070,2080,2090),KA
                                                                             DEQ40383
 954
      KS=-KS
                                                                             DEQ40384
      GO TO 1000
                                                                             DEQ40385
 980
      IF (IB-N1) 981,3002,981
                                                                             DEG40386
 981
      IF (RXH-1.) 3002,30n2,990
                                                                             DEQ40387
 990
      IF (KS) 954, 954, 992
                                                                             DEQ40388
 992
      KJ=IB+1
                                                                             DEQ40389
      VAR=VARX#VMIN/RAT
                                                                             DEQ40390
      DO 991 1#KJ:N1
                                                                             DEQ40391
      IF( ABS(DLT2(I)/AMAX1( ABS(Y(I)), YMIN)).GE.VAR) GC TO 3002
                                                                             DEQ40392
 991
      CONTINUE
                                                                             DEQ40393
      NVR=-1
                                                                             DE040394
      GO TO 952
                                                                             DEQ40395
      HALVE H. RETURN TO R.K.
                                                                             DEQ40396
 1100 R=IR
                                                                             DEQ40397
      H=H/(2.*R)
                                                                             DEQ40398
      IF ( ABS(H) .LT. HMIN) GO TO 3050
                                                                             DEQ40399
      IF (DARS (H) .LT. HMIN) GO TO 3050
                                                                             DEQ40400
      IDH=2
                                                                             DEQ40401
      RXH=RXA
                                                                             DEQ40402
      TST=+1.
                                                                             DEQ40403
      TEST=3.
                                                                             DEQ40404
      IF (NJH3)1104,1101,1101
                                                                             DEQ40405
 1101 IF (NSTRT) 1102,1106,1106
                                                                             DEQ40406
1102
      TEST=2.
                                                                             DEQ40407
      RESTORE INITIAL CONDITIONS AND RESTART.
                                                  (TEST=2.)
                                                                             DEQ40408
 1104 T=TZ
                                                                             DEQ40409
      TST=TEST
                                                                             DEQ40410
      DO 1105 I=1.N1
                                                                             DE040411
      Y(I)=T5(I)
                                                                             DEQ40412
      YP(I)=T6(I)
                                                                             DEQ40413
 1105 Y2P(I) = T7(I)
                                                                             DEQ40414
 1106 [KR=+]
                                                                             DEQ40415
      HA=H
                                                                             DEQ40416
      VMIN=ER/(H*H*100.)
                                                                             DE040417
      VMAX=VMIN#100000.
                                                                             DEQ40418
      GO TO 502
                                                                             DEQ40419
C
            SAVE Y2P(0) IN T2 (ACCUM, F1P(2H), F2P(2H))
      KA=1
                                                                             DEQ40420
```

1

```
2010 DO 2011 I=KJ+N1
                                                                                DEQ40421
      T2(I)=Y2P(I)
                                                                                DEQ40422
      T6(I) = W0 + Y2P(I)
                                                                                DEQ40423
 2011 T7(I)=V0+Y2P(I)
                                                                                DEQ40424
      GO TO 954
                                                                                DEQ40425
    KI=2 SAVE Y2P(2) IN T3 (ACCUM, F1P(2H)) F2P(2H))
                                                                              DEQ40426
 2020 DO 2021 I=KJ.N1
      T3(I)=Y2P(I)
                                                                                DEQ40428
      T6.(1) = T6(1) + W1 + Y2p(1)
T6(I) *T6(I) +W1*Y2P(I)

2021 T7(I) *T7(I) +V1*Y2P(I)

G0 T0 954

K1*3 SAVE Y2P(4) IN T4 (ACCUM, FIP(2H), F2P(2H))
                                                                                DEQ40429
                                                                                DEQ40430
                                                                                DEQ40431
                                                                                DEQ40432
 2030 DO 2031 I=KJ+N1
                                                                                DEQ40433
      T4(I)=Y2P(I)
                                                                                DEQ40434
     T6(I) = T6(I) + M2 + Y2R(I)

T7(I) = T7(I) + V2 + Y2P(I)

G0 T0 954

K1=4 SAVE Y2P(6) IN T5 (ACCUM, F1P(2H), F2P(2H))
                                                                                DEQ40435.
 2031 TT(I)=TT(I)+V2*Y2P(I)
                                                                                DEQ40436
                                                                                DEQ4,0437
                                                                                DEQ#0438
 2040 DO 2041 I=KJ*N1
                                                                                DEQ40439
      T5(I)=Y2P(I)
                                                                                DEQ40440
76(I)=T6(I)+W3*Y2P(I)
2041 T7(I)=T7(I)+V3*Y2P(I)
                                             DEQ40441
                                                                                DEQ40442.
GO TO 954 C K1=5 (ACCUM. F1P(2H), F2P(2H) FOR DOUBLING)
                                                                                DEQ40443
                                                                                DEQ40444
 2050 H1=1./(H+H)
      H2=H1+H1
      H3=1./RAT
                                                                                DEQ40447
      H4=H3*H3
                                                                                DEQ40448
      DO 2051 -I=KJ:N1----
                                                                                DEG40449
     UU ZUSI 1=KJ:NI-
. IF(I=IC)2053;2052;2053
                                                                                DEQ40450
 2052 H1=H1+H3
                                                                                DEQ40451
      H2=H2*H4
                                                                                DEQ40452
 2053 T6(I) = T6(I) + W4 + Y2P(I) + YP(I) + H1
                                                                                DEQ40453
 2051 T7(I) =T7(I) +V4*Y2p(I) +5.*Yp(I) *H1+Y(I) *H2
      GO TO 954
      K1=6 (ACCUM. F1P(2H), F2P(2H) FOR DOUBLING)
                                                                                DEQ40456
 2060 DO 2061 I=KJ•N1
                                                                                DEQ40457
      T6(I) = T6(I) + W5 + Y2P(I)
                                                                                DE040458
 2061 T7(I)=T7(I)+V5*Y2P(I)
                                                                                DEQ40459
      GO TO 954
                                                                                DEQ40460
      K1=7 (ACCUM. F1P(2H). F2P(2H) FOR DOUBLING)
                                                                                DEQ40461
 2070 DO 2071 T=KJ N1 -
                                                                                DEQ40462
```

```
T6(I) = T6(I) + W6 + Y2P(I)
                                                                                 DEQ40463
 2071 T7(I)=T7(I)+V6*Y2P(I)
                                                                                 DEQ40464
                                                                                 DEQ40465
      GO TO 954
             (ACCUM. F1P(2H), F2P(2H) FOR DOUBLING)
                                                                                 DEQ40466
      K1=8
 2080 DO 2081 I=KJ.N1
                                                                                 DEQ40467
      T6(I) = T6(I) + W7 + Y2P(I)
                                                                                 DEQ40468
 2081 T7(I) = T7(I) + V7 + Y2P(I)
                                                                                 DEQ40469
      GO TO 954
                                                                                 DEQ40470
      K1=9
             (ACCUM. F1P(2H), F2P(2H) FOR DOUBLING)
                                                                                 DEQ40471
 2090 DO 2091 I=KJ,N1
                                                                                 DEQ40472
      F1P(I) = T6(I) + w8 + Y2P(I)
                                                                                 DEQ40473
      F2P(I) = T7(I) + V8 + Y2P(I)
                                                                                 DEQ40474
                                                                                 DEQ40475
      DOUBLE H IN COWELL MODE
C
      DLT8(I) = 2.*DLT8(I) - DLT7(I)
                                                                                 DEQ40476
      DLT7(I) = 4. *DLT7(J) - (4. *DLT6(J) -DLT5(I))
                                                                                 DEQ40477
      DLT6(I) = 8.*DLT6(I) - (12.*DLT5(I) -6.*DLT4(I) +DLT3(I))
DLT5(I) = 16.*DLT5(I) - (32.*DLT4(I) -24.*DLT3(I) +8.*DLT2(I) -DLT1(I))
                                                                                 DEQ40478
                                                                                 DEQ40479
      DLT4(I) = 5.*DLT5(I) - (10.*DLT6(I) - 10.*DLT7(I) +5.*DLT8(1))
                                                                                 DEQ40480
     1+(Y2P(I)-T5(I))
                                                                                 DEQ40481
      DLT3(I)= 6.*DLT4(I)=(15.*DLT5(I)=20.*DLT6(I)+15.*DLT7(I)
                                                                                 DEQ40482
     1-6.*DLT8(]))-(Y2P(])-T4(]))
                                                                                 DEQ40483
      DLT2(I) = 7.*DLT3(I) - (21.*DL14(I) - 35.*DLT5(I) + 35.*DLT6(I)
                                                                                 DEQ40484
     1-21.*DLT7(I)+7.*DLT8(I))+(Y2P(I)-T3(I))
                                                                                 DEQ40485
      DLT1(I)= 8.*DLT2(I)=(28.*DLT3(I)=56.*DLT4(I)+70.*DLT5(I)
                                                                                 DEQ40486
     1-56.*DLT6(I)+28.*DLT7(I)-8.*DLT8(I))-(Y2P(I)-T2(I))
                                                                                 DEQ40487
 2091 CONTINUE
                                                                                 DEQ40488
      END OF DOUBLING
                                                                                 DEQ40489
      IF (NVR) 2093,2092,2092
                                                                                 DEQ40490
 2092 IDH=3
                                                                                 DEQ40491
      VMIN=VMIN/4.
                                                                                 DEQ40492
      VMAX=VMAX/4.
                                                                                 DEQ40493
      н=н+н
                                                                                 DEQ40494
                                                                                 DEQ40495
      HA=H
      NHS=NHH
                                                                                 DEQ40496
      GO TO 2095
                                                                                 DEQ40497
 3000 NDUB=-1
                                                                                 DEQ40498
 3002 NJH3=+1
                                                                                 DEQ40499
                                                                                 DEQ40500
      IF (NH2) 2095+3004+3004
 3004 IF(JHH-3)2095,3006,2095
                                                                                 DEQ40501
 3006 NJH3=-1
                                                                                 DEQ40502
      TZ=T
                                                                                 DE040503
      DO 3010 I=1:N1
                                                                                 DEQ40504
```

```
T5(I)=Y(I)
                                                                             DEQ40505
     T6(I) = YP(I)
                                                                             DEQ40506
3010 \text{ T7(I)} = \text{Y2P(I)}
                                                                             DEQ40507
     GO TO 2095
                                                                             DEQ40508
3050 NH2=-1
                                                                             DEQ40509
     IF (NSTRT) 3052,1000,1000
                                                                             DEQ40510
3052 TEST=13.
                                                                             DEQ40511
     GO TO 261
                                                                             DEQ40512
2093 RAT=2. #RAT
                                                                             DEQ40513
     K=K+K
                                                                             DEQ40514
     RKH=kKH-1.
                                                                             DEQ40515
     IDH=4
                                                                             DEQ49516
2095 KC=1
                                                                             DEQ40517
     KS=1
                                                                             DEQ40518
     STEP-SIZE O.K., PROCEED WITH COWELL STEP.
                                                                             DEQ40519
                                                                             DEQ40520
1000 TEST=-1.
                                                                             DEQ40521
     H≃HA
                                                                             DEQ40522
     NSTRT=+1
     HH=H#H
                                                                             DEQ40523
     NX=IB
                                                                             DEQ40524
     COMPLETE K STEPS FOR FIRST IB EQNS.
                                                                             DEQ40525
                                                                             DEQ40526
     DO 1055 KJ=1+K
                                                                             DEQ40527
     T=T+H
     IF (K-K1)6660,6660,6661
                                                                             DEQ40528
6660 NX=N1
                                                                             DEQ40529
                                                                             9EQ40530
     TEST=+1.
6661 DO 1001 I=1.NX
                                                                             DEQ40531
     IF (I-IC) 6666,6665,6666
                                                                             DEQ40532
6665 H=HA*RAT
                                                                             DEQ40533
                                                                             DEQ40534
     HH=H*H
6666 T1(I)=Y2P(I)
                                                                             DEQ40535
1001 Y(I) =HH*(F2P(I)+A0*Y2P(I)+A1*DLT8(I)+A2*DLT7(I)+A3*DLT6(I)
                                                                             DEQ40536
    1 +A4*nLT>(I)+A5*DL [4(I)+A6*ULT3(I)+A7*nLT?(I)+A8*nLT1(I))
                                                                             DEQ40537
                                                                             DEQ40538
     IF(I1)1007+1005+1005
                                                                             DEQ40539
1005 DO 1006 I=1.NX
                                                                             DEQ40540
     IF (I-IC) 1006,6667,1006
                                                                             DEQ40541
6667 H=HA*RAT
                                                                             DE040542
1006 YP(I)=H*(FIP(I)+AP0*Y2P(I)+AP1*DLT8(I)+AP2*DLT7(I)+AP3*DLT6(I)
                                                                             DEQ40543
    1 +AP4*DLT5(I)+AP5*DLT4(I)+AP6*DLT3(I)+AP7*DLT2(I)+AP8*DLT1(I))
                                                                             DEQ40544
1007 ASSIGN 1015 TO IFLAG
                                                                             DEQ40545
     IA=-1
                                                                             DEQ40546
```

```
DEQ40547
1010 CALL DAUX
                                                                           DEQ40548
     н≕н∧
                                                                           DEQ40549
     HH=H#H
                                                                           DEQ40550
1009 DO 1013 I=1+NK
                                                                           DEQ40551
     IF (I-IC) 6659,6668,6669
                                                                           UEQ40552
6668 H=HA*RAI
                                                                           DEQ40553
     HH=H#H
                                                                           DEQ40554
6669 TMP1=Y2P(I)-I1(I)
                                                                           UEQ40555
     TMP2=TMP1-DLis(I)
                                                                           DE040556
     TMP3=TMP2=DL[/(I)
                                                                           DE040557
     TMP4=TMP3-DLTo([)
                                                                           DEQ40558
     TMP5=TMP4-DL 10(I)
                                                                           DE040559
     7MP6=TMP5=UL[4(])
                                                                           DE040560
     TMP7=TMP6-DLf3(1)
     TMP8=TMP7=0L12([)
                                                                           DEQ40561
     Y(I)=HH*(F2P(1)+MA*Y2P(I)+H1*TMP1+B2*TMP2+R3*TMP3+B4*TMP4+B5*TMP5 DEQ40562
                                                                           DEQ40563
    1 +B6*TMP6+B7*TMP7+B8*TMP8)
1011 YP(I)=H*(F1P(L)+BPU*Y2P(I)+BP1*TMP1+BP2*TMP2+RP3*TMP3+RP4*TMP4
                                                                           DEQ40564
    1 +BP5*TMP5+BP6*TMP6+BP7*TMP7+RP8*TMP4)
                                                                           DEQ40565
1013 CONTINUE
                                                                           DE040566
                                                                           DEQ40567
     GO TO IFLAG (1015 - 1020)
1015 ASSIGN 1020 TO IFLAG
                                                                           DEQ40568
                                                                           DE040569
     IA=+1
                                                                           DEQ40570
     GO TO 1010
1020 DO 1021 I=1,NX
                                                                           ÜEQ40571
                                                                           DEQ40572
     TMP1=Y2P([)-[1([)
     TMP2=TMP1=DL (1)
                                                                           DEQ40573
     DLT8(I)=IMPI
                                                                           DEQ40574
                                                                           DEQ40575
     (I) \1.1d-S9MT=19MT
                                                                           DE040576
     DLT7(I)=IMP2
                                                                           DEQ40577
     TMP2=TMP1-DLIG(1)
                                                                           DEQ40578
     DLT6(I)=IMP1
                                                                           DEQ40579
     TMP1=TMP2-ULT5(I)
     DLT5(1)=1MP2
                                                                           DEQ40580
                                                                           DEQ40581
     IMPZ=TMP1-DL[4(I)
                                                                           DE040582
     DLT4(I)=IMPI
                                                                           DEQ40583
     IMP1=TMP2-DLTJ(I)
     DLT3(I)=TMP2
                                                                           DE040584
                                                                           DEQ40585
     DLT1(I)=TMP1-DLT2(I)
                                                                           DEQ40586
     DLT2(I)=TMP1
     F1P(I)=F1P(I)+Y2P(I)
                                                                           UE040587
1021 F2P(I) = F2P(I) + F1P(I)
                                                                            DE040588
```

Į

TEST=TFST-1.
H=HA
HH=HA\*HA
1022 CONTINUE
TEST=-1.
GO TO 201
END

DEQ40589 UEQ40590 DEQ40591 DEQ40592 DEQ40593 DEQ40594 DEQ40595

UNCLASSIFIED
Security Classification

| DOCUMENT CONTROL DATA - R&D (Security classification of little body of abstract and indexing annotation must be entered when the overall report is classified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                    |                                    |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|------------------------------------|--|
| 1 ORIGINATING ACTIVITY (Corporate author)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 24 REPORT SECURITY C LASSIFICATION |                                    |  |
| Aerospace Corporation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | τ                                  | Jnclassified                       |  |
| El Segundo, California                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 2 b GROUI                          | P                                  |  |
| 3 REPORT TITLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                    |                                    |  |
| Floating Point Cowell (Second-Sum) Runge-Kutta Integration of Second-Order Ordinary Differential Equations (Subroutine ASC DEQ4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                    |                                    |  |
| 4 DESCRIPTIVE NOTES (Type of report and inclusive dates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |                                    |                                    |  |
| 5 AUTHOR(S) (Lest name, litst name, initial)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                    |                                    |  |
| Holt, James F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                    |                                    |  |
| 6 REPORT DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7ª TOTAL NO. OF P.               | AGE5                               | 75 NO. OF REFS                     |  |
| May 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43                               |                                    |                                    |  |
| 88 CONTRACT OR GRANT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 94 ORIGINATOR'S REPORT NUMBER(S) |                                    |                                    |  |
| F04695-67-C-0158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                                    |                                    |  |
| b PROJECT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TR-0158(3307-02)-9               |                                    |                                    |  |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 95 OTHER REPORT                  | NO(S) (Any                         | other numbers that may be assigned |  |
| d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SAMSO-TR                         |                                    |                                    |  |
| 10 AVAILABILITY/LIMITATION NOTICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |                                    |                                    |  |
| This document is subject to special ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                                    |                                    |  |
| foreign governments or foreign nationals may be made only with prior approval of SAMSO(SMTTA).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                                    |                                    |  |
| 11 SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 SPONSORING MILI               |                                    |                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                                    | Systems Organization               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Air Force Sy<br>Los Angeles      |                                    |                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Los Angeres                      | , Calli                            | or ma                              |  |
| 13 ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                                    |                                    |  |
| ASC DEQ4 is a floating point subroutine, written in FORTRAN IV source language, which integrates numerically a set of N simultaneous second-order ordinary differe, tial equations in which first derivatives may or may not appear [i.e., $y_i'' = f(t, y_i, y_i')$ of $y_i'' = f(t, y_i)$ , $i = 1, 2,, N$ ]. If the N equations can be separated into two groups (IB and N-IB) such that the first IB equations are not dependent on the final N-IB equations (e.g., variational equations) then DEQ4 has the capability of integrating the final N-IB equations at a larger step size than the first IB equations, thus saving $2(R-1)(N-IB)$ derivatives per integration step. This subroutine obsoletes subroutine DEQ2 with the following improvements: better accuracy controls, new starting procedure, improved halving and doubling procedure, reduction in computing time, and reduction in core storage requirements (10N less).  The subroutine is restricted in that it contains 20 digit octal constants (real constants) for the CDC 6000 series machines. |                                  |                                    |                                    |  |

DD FORM 1473

UNCLASSIFIED
Security Classification

## UNCLASSIFIED Security Classification

| 14 KEY                                                                                                                                         | words     |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| Floating Point Cowell (Second-Sum) Runge-Kutta Integration Second-Order Ordinary Differential I Two-Group Multi-Step Mode Subroutine Step Size | Equations |  |  |  |
|                                                                                                                                                |           |  |  |  |
| Abstract (Continued)                                                                                                                           |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
| `                                                                                                                                              |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
| <b>}</b>                                                                                                                                       |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |
|                                                                                                                                                |           |  |  |  |

UNCLASSIFIED
Security Classification